當(dāng)工作或?qū)W習(xí)進(jìn)行到一定階段或告一段落時(shí),需要回過頭來對所做的工作認(rèn)真地分析研究一下,肯定成績,找出問題,歸納出經(jīng)驗(yàn)教訓(xùn),提高認(rèn)識,明確方向,以便進(jìn)一步做好工作,并把這些用文字表述出來,就叫做總結(jié)。那關(guān)于總結(jié)格式是怎樣的呢?而個(gè)人總結(jié)又該怎么寫呢?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對大家能夠有所幫助。
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇一
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。
第二:平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:—個(gè)通項(xiàng);─個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;—個(gè)是計(jì)算。
第六:解析幾何。
這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類??嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇二
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
2.數(shù)列的分類
3.數(shù)列的通項(xiàng)公式
再強(qiáng)調(diào)對于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):
(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇三
一、基本知識
(一)、數(shù)與代數(shù) a、數(shù)與式:
①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
①在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。乘法:
①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,an乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)?;旌享樞颍合人愠朔?,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)平方根:
①實(shí)數(shù)分有理數(shù)和無理數(shù)。
意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式:
代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。合并同類項(xiàng):
①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。
整式的乘法:
①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;
對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不能為0。
①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。b、方程與不等式
1、方程與方程組 一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),將未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法、加減消元法。
二次函數(shù)(如拋物線y?ax2?bx?c),一元二次方程的解可在二次函數(shù)圖象中表示,一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)y為0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與x軸的交點(diǎn)就是該方程的解。
(1)配方法:利用配方,使方程變?yōu)橥耆椒焦?,再開平方法去求解。
iii當(dāng)△0時(shí),一元二次方程沒有實(shí)數(shù)根;
2、不等式與不等式組 不等式:
①用符號“”,或“”,號連接的式子叫不等式。
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過程叫做解不等式。
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
3、函數(shù):
變量:因變量,自變量。
①若兩個(gè)變量x、y間的關(guān)系式可以表示成:y?kx?b(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。
②當(dāng)b=0時(shí),即:y?kx(k?0)稱y是x的正比例函數(shù)。
一次函數(shù)的圖象:
①把一個(gè)函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)y?kx(k?0)的圖象是經(jīng)過原點(diǎn)的一條直線。
當(dāng)k0,b0時(shí),則經(jīng)1、3、4象限;當(dāng)k0,b0時(shí),則經(jīng)1、2、3象限。
1、點(diǎn),線,面:
①圖形是由點(diǎn),線,面構(gòu)成的。
①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②n棱柱就是底面圖形有n條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角 線:
①線段有兩個(gè)端點(diǎn)。
①兩點(diǎn)之間的所有連線中,線段最短。
②兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
角的比較:
①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
③如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。
③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根射線和直線可以無限延長有關(guān),垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了兩點(diǎn)后,一定要把線段穿出兩點(diǎn)。角平分線:把一個(gè)角平分的射線叫該角的角平分線。
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:
1、對角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理: 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理: 三角形兩邊的和大于第三邊
16、推論: 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理: 三角形三個(gè)內(nèi)角的和等于180°
18、推論1: 直角三角形的兩個(gè)銳角互余
21、全等三角形的對應(yīng)邊、對應(yīng)角相等
25、邊邊邊公理(sss):有三邊對應(yīng)相等的兩個(gè)三角形全等
27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對等角)
31、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35、推論1:三個(gè)角都相等的三角形是等邊三角形
36、推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形
38、直角三角形斜邊上的中線等于斜邊的一半
39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1:關(guān)于某條直線對稱的兩個(gè)圖形是全等形
48、定理:四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n-2)×180°
51、推論:任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2:平行四邊形的對邊相等
54、推論:夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分
56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
67、菱形判定定理1:四邊都相等的四邊形是菱形
68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等
71、定理1:關(guān)于中心對稱的兩個(gè)圖形是全等的
79、推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
s?acd12?
(a?b)?h?l?hcd83、(1)比例的基本性質(zhì):如果:?b,那么ad?bc;如果:ad?bc,那么:a?bb?c?dab。
?ab?cd
91、相似三角形判定定理1 :兩角對應(yīng)相等,兩三角形相似(asa)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)94、判定定理3:三邊對應(yīng)成比例,兩三角形相似(sss)
98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。
116、定理:一條弧所對的圓周角等于它所對的圓心角的一半
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對的圓周角
129、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
139、正n邊形的每個(gè)內(nèi)角都等于:12n?2n?180o
140、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積:sn?pn?rn 其中:pn為正n邊形的周長,rn為弦心距。
142、邊長為a的正三角形面積:s?
143、弧長計(jì)算公式: l?n18034a2
三、常用數(shù)學(xué)公式
公式分類 公式表達(dá)式
22乘法與因式分解 a?b?(a?b)(a?b)
b?4ac2a
1?2?3?4?5?6???n?n(n?1)2;2
四、基本方法
1、配方法:所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式n次冪的形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到。
2、因式分解法:因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法:換元法,是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理:一元二次方程:ax2?bx?c?0(a、b、c屬于實(shí)數(shù),且a≠0)根的2判別,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),??b?4ac,解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法:在解題時(shí),我們常常會(huì)采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法:反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
一、至少有兩個(gè)。
歸謬,是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法:平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添臵輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添臵補(bǔ)助線,即使需要添臵輔助線,也很容易考慮到。
9、幾何變換法:在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題:是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題:是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:也叫數(shù)形結(jié)合法,借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
張健 2012-5-22 總結(jié)
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇四
2圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4同圓或等圓的半徑相等
5到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
6和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
7到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
9定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。
10垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
12推論2 圓的兩條平行弦所夾的弧相等
13圓是以圓心為對稱中心的中心對稱圖形
15推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16定理 一條弧所對的圓周角等于它所對的圓心角的一半
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇五
2、斜二測畫法應(yīng)注意的地方:
3、表(側(cè))面積與體積公式:
⑶臺(tái)體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=
⑷球體:①表面積:s=;②體積:v=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇六
1、圓的定義
在一個(gè)個(gè)平面內(nèi),線段oa繞它固定的一個(gè)端點(diǎn)o旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)a隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)o叫做圓心,線段oa叫做半徑。
2、直線圓的與置位關(guān)系
1.線直與圓有唯公一共時(shí),點(diǎn)做直叫與圓線切
2.三角的外形圓接的圓叫做三心形角外心
3.弦切角于所等夾弧所對的的圓心角
4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心
5.垂于直徑半直線必為圓的的切線
6.過徑半外的點(diǎn)并且垂直端于半的徑直線是圓切線
7.垂于直徑半直線是圓的的切線
8.圓切線垂的直過切于點(diǎn)半徑
3、圓的幾何表示
以點(diǎn)o為圓心的圓記作“⊙o”,讀作“圓o”
二、垂徑定理及其推論
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的'兩條弧。
(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
三、弦、弧等與圓有關(guān)的定義
1、弦
連接圓上任意兩點(diǎn)的線段叫做弦。(如圖中的ab)
2、直徑
經(jīng)過圓心的弦叫做直徑。(如途中的cd)
直徑等于半徑的2倍。
3、半圓
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。
4、弧、優(yōu)弧、劣弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。
弧用符號“⌒”表示,以a,b為端點(diǎn)的弧記作“ ”,讀作“圓弧ab”或“弧ab”。
大于半圓的弧叫做優(yōu)弧(多用三個(gè)字母表示);小于半圓的弧叫做劣弧(多用兩個(gè)字母表示)
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇七
其實(shí)在高三這一年,只要孩子不放棄,繼續(xù)努力,逆襲的幾率還是很大的,特別是數(shù)學(xué)基礎(chǔ)不好的同學(xué)。下面是小編為大家整理的關(guān)于高考數(shù)學(xué)必考知識點(diǎn)最全總結(jié),歡迎大家來閱讀。
一、自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1、y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1、作法與圖形:通過如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3、k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k0時(shí),直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn);
當(dāng)b0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=o時(shí),直線通過原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k0時(shí),直線只通過一、三象限;當(dāng)k0時(shí),直線只通過二、四象限。
1、向量的基本概念
(1)向量
既有大小又有方向的量叫做向量。物理學(xué)中又叫做矢量。如力、速度、加速度、位移就是向量。
向量可以用一條有向線段(帶有方向的線段)來表示,用有向線段的長度表示向量的大小,用箭頭所指的方向表示向量的方向。向量也可以用一個(gè)小寫字母a,b,c表示,或用兩個(gè)大寫字母加表示(其中前面的字母為起點(diǎn),后面的字母為終點(diǎn))
(2)平行向量
方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。
若向量a、b平行,記作a∥b。
規(guī)定:0與任一向量平行。
(3)相等向量
長度相等且方向相同的向量叫做相等向量。
①向量相等有兩個(gè)要素:一是長度相等,二是方向相同,二者缺一不可。
②向量a,b相等記作a=b。
③零向量都相等。
④任何兩個(gè)相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點(diǎn)無關(guān)。
2、對于向量概念需注意
(1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的??梢员容^大小。
(2)向量共線與表示它們的有向線段共線不同。向量共線時(shí),表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。
(3)由向量相等的定義可知,對于一個(gè)向量,只要不改變它的大小和方向,它是可以任意平行移動(dòng)的,因此用有向線段表示向量時(shí),可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組平行向量都可以平移到同一條直線上。
3、向量的運(yùn)算律
(1)交換律:α+β=β+α
(2)結(jié)合律:(α+β)+γ=α+(β+γ)
(3)數(shù)量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
1、函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(—x);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
2、復(fù)合函數(shù)的.有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對稱性)
4、函數(shù)的周期性
5、方程k=f(x)有解k∈d(d為f(x)的值域);
7、(1)(a0,a≠1,b0,n∈r+);
(3)l og a b的符號由口訣“同正異負(fù)”記憶;
8、判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)a中元素必須都有象且唯一;
9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10、對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)閍,值域?yàn)閎,則有f[f——1(x)]=x(x∈b),f——1[f(x)]=x(x∈a)。
13、恒成立問題的處理方法:
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇八
知識網(wǎng)絡(luò):
概念、定義:
1、大于0的數(shù)叫做正數(shù)(positive number)。
2、在正數(shù)前面加上負(fù)號“-”的數(shù)叫做負(fù)數(shù)(negative number)。
3、整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)(rational number)。
4、人們通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸(number axis)。
5、在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)(origin)。
6、一般的,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolute value)。
7、由絕對值的定義可知:一個(gè)正數(shù)的絕對值是它本身;一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
8、正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9、兩個(gè)負(fù)數(shù),絕對值大的反而小。
10、有理數(shù)加法法則
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負(fù)號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
11、有理數(shù)的加法中,兩個(gè)數(shù)相加,交換交換加數(shù)的位置,和不變。
12、有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
13、有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
14、有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值向乘。
任何數(shù)同0相乘,都得0。
15、有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
16、一般的,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
17、三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
18、一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
19、有理數(shù)除法法則
除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
20、兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個(gè)不等于0的數(shù),都得0。
21、求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪(power)。在an 中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponeht)
22、根據(jù)有理數(shù)的乘法法則可以得出
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。
顯然,正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
23、做有理數(shù)混合運(yùn)算時(shí),應(yīng)注意以下運(yùn)算順序:
(1)先乘方,再乘除,最后加減;
(2)同級運(yùn)算,從左到右進(jìn)行;
(3)如有括號,先做括號內(nèi)的運(yùn)算,按小括號、中括號、大括號依次進(jìn)行。
24、把一個(gè)大于10數(shù)表示成a×10n 的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)計(jì)數(shù)法。
25、接近實(shí)際數(shù)字,但是與實(shí)際數(shù)字還是有差別,這個(gè)數(shù)是一個(gè)近似數(shù)(approximate number)。
26、從一個(gè)數(shù)的左邊的第一個(gè)非0數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個(gè)數(shù)的有效數(shù)字(significant digit)
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇九
一、分式的定義:
一般地,如果a,b表示兩個(gè)整數(shù),并且b中含有字母,那么式子
二、與分式有關(guān)的條件
①分式有意義:分母不為0(b?0)
②分式無意義:分母為0(b?0)③分式值為0:分子為0且分母不為0(?a叫做分式,a為分子,b為分母。b?a?0)
?b?0?a?0?a?0
或?)b?0b?0???a?0?a?0
或?)
?b?0?b?0④分式值為正或大于0:分子分母同號(?⑤分式值為負(fù)或小于0:分子分母異號(?⑥分式值為1:分子分母值相等(a=b)
⑦分式值為-1:分子分母值互為相反數(shù)(a+b=0)
三、分式的基本性質(zhì)
(1)分式的分子和分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。字母表示:aa?caa?c?,?,其中a、b、c是整式,c?0。bb?cbb?c(2)分式的符號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個(gè),分式的值不變,即:a?a?aa????? b?bb?b注意:在應(yīng)用分式的基本性質(zhì)時(shí),要注意c?0這個(gè)限制條件和隱含條件b?0。
四、分式的約分
1.定義:根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。2.步驟:把分式分子分母因式分解,然后約去分子與分母的公因。
3.兩種情形:①分式的分子與分母均為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
1.定義:把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。
(依據(jù):分式的基本性質(zhì)?。?/p>
3.“兩大類三類型”
二、三”型,“二,四”型,“
四、六”型 1)“
4.通分的方法:先觀察分母是單項(xiàng)式還是多項(xiàng)式,如果是分母單項(xiàng)式,那就繼續(xù)考慮是什么類型,找出最簡公分母,進(jìn)行通分;如果分母是多項(xiàng)式,那么先把分母能分解的要因式分解,考慮什么類型,繼續(xù)通分。
六、分式的四則運(yùn)算與分式的乘方 ① 分式的乘除法法則:
b?b?③ 分式的加減法則:
1)同分母分式加減法:分母不變,把分子相加減。式子表示為:
naba?b?? cccacad?bc?? bdbd2)異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為:3)兩種類型:一是分式間的加減;二是整式與分式的加減(整式的分母為1)
先乘方、再乘除、后加減,同級運(yùn)算中,誰在前先算誰,有括號的先算括號里面的,也要注意靈活,提高解題質(zhì)量。
注意:在運(yùn)算過程中,要明確每一步變形的目的和依據(jù),注意解題的格式要規(guī)范,不要隨便跳步,以便查對有無錯(cuò)誤或分析出錯(cuò)的原因。
加減后得出的結(jié)果一定要化成最簡分式(或整式)。
am?an?am?n
amn??nn?amn
?ab??anbn
am?an?am?n
(a?0)
1an?a??n0???n
a?na?0)
a?1(a?0)(任何不等于零的數(shù)的零次冪都等于1)
ab?b?其中m,n均為整數(shù)。
八、分式方程
(2)去分母,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)(3)解整式方程,得到整式方程的解。
第2頁/共3頁
(4)檢驗(yàn),把所得的整式方程的解代入最簡公分母中:如果最簡公分母為0,則原方程無解,這個(gè)未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。
注意:產(chǎn)生增根的條件是①是得到的整式方程的解;②代入最簡公分母后值為0。
九、列分式方程——基本步驟:審,設(shè),列,解,答(跟一元一次不等式組的應(yīng)用題解法一樣)① 審—仔細(xì)審題,找出等量關(guān)系。② 設(shè)—合理設(shè)未知數(shù)。③ 列—根據(jù)等量關(guān)系列出方程(組)。④ 解—解出方程(組)。注意檢驗(yàn) ⑤ 答—答題。
第3頁/共3頁
高三數(shù)學(xué)知識點(diǎn)全總結(jié)高三數(shù)學(xué)知識篇十
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差a-b可以表示成a與b的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
二、概率定義
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式