當(dāng)前位置:網(wǎng)站首頁 >> 文檔 >> 最新初中數(shù)學(xué)分式計(jì)算(5篇)

最新初中數(shù)學(xué)分式計(jì)算(5篇)

格式:DOC 上傳日期:2024-12-23 22:07:14
最新初中數(shù)學(xué)分式計(jì)算(5篇)
    小編:大謙聊職場

范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數(shù)學(xué)分式計(jì)算篇一

初二數(shù)學(xué)上冊知識點(diǎn)總結(jié):

全等三角形的對應(yīng)邊、對應(yīng)角相等

2邊角邊公理(sas)

有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

角邊角公理(asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

推論(aas)

有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

邊邊邊公理(sss)

有三邊對應(yīng)相等的兩個(gè)三角形全等

斜邊、直角邊公理(hl)

有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

定理1

在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

定理2

到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合10

等腰三角形的性質(zhì)定理

等腰三角形的兩個(gè)底角相等

(即等邊對等角)

推論1

等腰三角形頂角的平分線平分底邊并且垂直于底邊

等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合13

推論3

等邊三角形的各角都相等,并且每一個(gè)角都等于60°

等腰三角形的判定定理

如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

推論1

三個(gè)角都相等的三角形是等邊三角形

推論

有一個(gè)角等于60°的等腰三角形是等邊三角形

在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

直角三角形斜邊上的中線等于斜邊上的一半

定理

線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

逆定理

和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合22

定理1

關(guān)于某條直線對稱的兩個(gè)圖形是全等形

定理

如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

24定理3

兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

25逆定理

如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

26勾股定理

直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

27勾股定理的逆定理

如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形

28定理

四邊形的內(nèi)角和等于360°

29四邊形的外角和等于360°

30多邊形內(nèi)角和定理

n邊形的內(nèi)角的和等于(n-2)×180°

31推論

任意多邊的外角和等于360°

32平行四邊形性質(zhì)定理1

平行四邊形的對角相等

33平行四邊形性質(zhì)定理2

平行四邊形的對邊相等

34推論

夾在兩條平行線間的平行線段相等

35平行四邊形性質(zhì)定理3

平行四邊形的對角線互相平分

36平行四邊形判定定理1

兩組對角分別相等的四邊形是平行四邊形

37平行四邊形判定定理2

兩組對邊分別相等的四邊形是平行四邊形

38平行四邊形判定定理3

對角線互相平分的四邊形是平行四邊形

39平行四邊形判定定理4

一組對邊平行相等的四邊形是平行四邊形

40矩形性質(zhì)定理1

矩形的四個(gè)角都是直角

41矩形性質(zhì)定理2

矩形的對角線相等

42矩形判定定理1

有三個(gè)角是直角的四邊形是矩形

43矩形判定定理2

對角線相等的平行四邊形是矩形

44菱形性質(zhì)定理1

菱形的四條邊都相等

45菱形性質(zhì)定理2

菱形的對角線互相垂直,并且每一條對角線平分一組對角

46菱形面積=對角線乘積的一半,即s=(a×b)÷2

47菱形判定定理1

四邊都相等的四邊形是菱形

48菱形判定定理2

對角線互相垂直的平行四邊形是菱形

49正方形性質(zhì)定理1

正方形的四個(gè)角都是直角,四條邊都相等

50正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

51定理1

關(guān)于中心對稱的兩個(gè)圖形是全等的52定理2

關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

53逆定理

如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

54等腰梯形性質(zhì)定理

等腰梯形在同一底上的兩個(gè)角相等

55等腰梯形的兩條對角線相等

56等腰梯形判定定理

在同一底上的兩個(gè)角相等的梯形是等腰梯形

57對角線相等的梯形是等腰梯形

58平行線等分線段定理

如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

推論1

經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

推論2

經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

三角形中位線定理

三角形的中位線平行于第三邊,并且等于它的一半

梯形中位線定理

梯形的中位線平行于兩底,并且等于兩底和的一半

l=(a+b)÷2

s=l×h

初二數(shù)學(xué)分式知識點(diǎn)總結(jié)匯總

初二數(shù)學(xué)分式知識點(diǎn)總結(jié):

(一)運(yùn)用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

(三)因式分解

1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個(gè)公式叫完全平方公式。

(2)完全平方式的形式和特點(diǎn)

①項(xiàng)數(shù):三項(xiàng)

②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號相同。

③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。

(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

(五)分組分解法

我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b).這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式.(六)提公因式法

1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式.當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃危蚋淖兎?,直到可確定多項(xiàng)式的公因式.2.運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于

一次項(xiàng)的系數(shù).2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

①列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù).3.將原多項(xiàng)式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式.3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.4.分式約分中注意正確運(yùn)用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個(gè)分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.(八)分?jǐn)?shù)的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變.3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備.4.通分的依據(jù):分式的基本性質(zhì).5.通分的關(guān)鍵:確定幾個(gè)分式的公分母.通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分?jǐn)?shù)的通分得到分式的通分:

把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號.10.對于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分.11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化.12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.(九)含有字母系數(shù)的一元一次方程

1.含有字母系數(shù)的一元一次方程

引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)

在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零。

初中數(shù)學(xué)分式計(jì)算篇二

分式知識點(diǎn)歸納

一、分式的定義:

一般地,如果a,b表示兩個(gè)整數(shù),并且b中含有字母,那么式子

二、與分式有關(guān)的條件

①分式有意義:分母不為0(b?0)

②分式無意義:分母為0(b?0)③分式值為0:分子為0且分母不為0(?a叫做分式,a為分子,b為分母。b?a?0)

?b?0?a?0?a?0

或?)b?0b?0???a?0?a?0

或?)

?b?0?b?0④分式值為正或大于0:分子分母同號(?⑤分式值為負(fù)或小于0:分子分母異號(?⑥分式值為1:分子分母值相等(a=b)

⑦分式值為-1:分子分母值互為相反數(shù)(a+b=0)

三、分式的基本性質(zhì)

(1)分式的分子和分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。字母表示:aa?caa?c?,?,其中a、b、c是整式,c?0。bb?cbb?c(2)分式的符號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個(gè),分式的值不變,即:a?a?aa????? b?bb?b注意:在應(yīng)用分式的基本性質(zhì)時(shí),要注意c?0這個(gè)限制條件和隱含條件b?0。

四、分式的約分

1.定義:根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。2.步驟:把分式分子分母因式分解,然后約去分子與分母的公因。

3.兩種情形:①分式的分子與分母均為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。

②分子分母若為多項(xiàng)式,先對分子分母進(jìn)行因式分解,再約分。4.最簡分式的定義:一個(gè)分式的分子與分母沒有公因式時(shí),叫做最簡分式?!艏s分時(shí)。分子分母公因式的確定方法:

1)系數(shù)取分子、分母系數(shù)的最大公約數(shù)作為公因式的系數(shù).2)取各個(gè)公因式的最低次冪作為公因式的因式.3)如果分子、分母是多項(xiàng)式,則應(yīng)先把分子、分母分解因式,然后判斷公因式.五、分式的通分

1.定義:把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。

(依據(jù):分式的基本性質(zhì)?。?/p>

2.最簡公分母:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母?!敉ǚ謺r(shí),最簡公分母的確定方法:

1.系數(shù)取各個(gè)分母系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).2.取各個(gè)公因式的最高次冪作為最簡公分母的因式.3.如果分母是多項(xiàng)式,則應(yīng)先把每個(gè)分母分解因式,然后判斷最簡公分母.第1頁/共3頁

3.“兩大類三類型”

通分“兩大類”指的是:一是分母是單項(xiàng)式;二是分母是多項(xiàng)式 “兩大類”下的“三類型” :“

二、三”型,“二,四”型,“

四、六”型 1)“

二、三”型:指幾個(gè)分母之間沒有關(guān)系,最簡公分母就是他們的乘積; 2)“二,四”型:指其一個(gè)分母完全包括另一個(gè)分母,最簡公分母就是其一的那個(gè)分母; 3)“

四、六”型:指幾個(gè)分母之間有相同的因式,同時(shí)也有獨(dú)特的因式,最簡公分母既要有獨(dú)特的因式,也應(yīng)包括相同的因式

4.通分的方法:先觀察分母是單項(xiàng)式還是多項(xiàng)式,如果是分母單項(xiàng)式,那就繼續(xù)考慮是什么類型,找出最簡公分母,進(jìn)行通分;如果分母是多項(xiàng)式,那么先把分母能分解的要因式分解,考慮什么類型,繼續(xù)通分。

六、分式的四則運(yùn)算與分式的乘方 ① 分式的乘除法法則:

aca?c?? bdb?dacada?d分式除以分式:把除式的分子、分母顛倒位置后,與被除式相乘。式子表示為:????

bdbcb?c分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。式子表示為:

an?a?② 分式的乘方:把分子、分母分別乘方。式子表示為:???n

b?b?③ 分式的加減法則:

1)同分母分式加減法:分母不變,把分子相加減。式子表示為:

naba?b?? cccacad?bc?? bdbd2)異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為:3)兩種類型:一是分式間的加減;二是整式與分式的加減(整式的分母為1)

注意:整式與分式加減法:可以把整式當(dāng)作一個(gè)整數(shù),整式前面是負(fù)號,要加括號,看作是分母為1的分式,再通分。④ 分式的加、減、乘、除、乘方的混合運(yùn)算的運(yùn)算順序

先乘方、再乘除、后加減,同級運(yùn)算中,誰在前先算誰,有括號的先算括號里面的,也要注意靈活,提高解題質(zhì)量。

注意:在運(yùn)算過程中,要明確每一步變形的目的和依據(jù),注意解題的格式要規(guī)范,不要隨便跳步,以便查對有無錯(cuò)誤或分析出錯(cuò)的原因。

加減后得出的結(jié)果一定要化成最簡分式(或整式)。

七、整數(shù)指數(shù)冪 ① 引入負(fù)整數(shù)、零指數(shù)冪后,指數(shù)的取值范圍就推廣到了全體實(shí)數(shù),并且正正整數(shù)冪的法則對對負(fù)整數(shù)指數(shù)冪一樣適用。即:

am?an?am?n

amn??nn?amn

?ab??anbn

am?an?am?n

(a?0)

1an?a??n0???n

a?na?0)

a?1(a?0)(任何不等于零的數(shù)的零次冪都等于1)

ab?b?其中m,n均為整數(shù)。

八、分式方程

1.分式方程:指含分式,且分母中含有未知數(shù)的方程 2.解分式方程的步驟:(1)能化簡的先化簡

(2)去分母,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)(3)解整式方程,得到整式方程的解。

第2頁/共3頁

(4)檢驗(yàn),把所得的整式方程的解代入最簡公分母中:如果最簡公分母為0,則原方程無解,這個(gè)未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。

注意:產(chǎn)生增根的條件是①是得到的整式方程的解;②代入最簡公分母后值為0。

九、列分式方程——基本步驟:審,設(shè),列,解,答(跟一元一次不等式組的應(yīng)用題解法一樣)① 審—仔細(xì)審題,找出等量關(guān)系。② 設(shè)—合理設(shè)未知數(shù)。③ 列—根據(jù)等量關(guān)系列出方程(組)。④ 解—解出方程(組)。注意檢驗(yàn) ⑤ 答—答題。

第3頁/共3頁

初中數(shù)學(xué)分式計(jì)算篇三

七年級數(shù)學(xué)(上)知識點(diǎn)

人教版七年級數(shù)學(xué)上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的認(rèn)識初步四個(gè)章節(jié)的內(nèi)容.第一章

有理數(shù)

二.知識概念

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類:

2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.3.相反數(shù):

(1)只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0

?

a+b=0

?

a、b互為相反數(shù).4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2)

絕對值可表示為:或

;絕對值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0??;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而??;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)

0,小數(shù)-大數(shù)

0.6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若

a≠0,那么的倒數(shù)是;若ab=1?

a、b互為倒數(shù);若ab=-1?

a、b互為負(fù)倒數(shù).7.有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a

;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).10

有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負(fù)因式的個(gè)數(shù)決定.11

有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac

.12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):

(-a)n=-an或(a

-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):

(-a)n

=an

(a-b)n=(b-a)n

.14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.18.混合運(yùn)算法則:先乘方,后乘除,最后加減.第二章

整式的加減

二.知識概念

1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算。或雖含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

第三章

一元一次方程

二.知識概念

1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.2.一元一次方程的標(biāo)準(zhǔn)形式:

ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).3.一元一次方程解法的一般步驟:

整理方程

……

去分母

……

去括號

……

移項(xiàng)

……

合并同類項(xiàng)

……

系數(shù)化為1

……

(檢驗(yàn)方程的解).4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:…………

多用于“和,差,倍,分問題”

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:

…………

多用于“行程問題”

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).11.列方程解應(yīng)用題的常用公式:

(1)行程問題:

距離=速度·時(shí)間;

(2)工程問題:

工作量=工效·工時(shí);

(3)比率問題:

部分=全體·比率;

(4)順逆流問題:

順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價(jià)格問題:

售價(jià)=定價(jià)·折·,利潤=售價(jià)-成本,;

(6)周長、面積、體積問題:c圓=2πr,s圓=πr2,c長方形=2(a+b),s長方形=ab,c正方形=4a,s正方形=a2,s環(huán)形=π(r2-r2),v長方體=abc,v正方體=a3,v圓柱=πr2h,v圓錐=πr2h.本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

第四章

圖形的認(rèn)識初步

二、本章書涉及的數(shù)學(xué)思想:

1.分類討論思想。在過平面上若干個(gè)點(diǎn)畫直線時(shí),應(yīng)注意對這些點(diǎn)分情況討論;在畫圖形時(shí),應(yīng)注意圖形的各種可能性。

2.方程思想。在處理有關(guān)角的大小,線段大小的計(jì)算時(shí),常需要通過列方程來解決。

3.圖形變換思想。在研究角的概念時(shí),要充分體會對射線旋轉(zhuǎn)的認(rèn)識。在處理圖形時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。

4.化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計(jì)數(shù)時(shí),總要?jiǎng)潥w到公式n(n-1)/2的具體運(yùn)用上來。七年級數(shù)學(xué)(下)知識點(diǎn)

第五章

交線與平行線

二、知識概念

1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

2.對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。

3.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

5.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。

同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。

9.定理與性質(zhì)

對頂角的性質(zhì):對頂角相等。

10垂線的性質(zhì):

性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

11.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

12.平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。

性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內(nèi)錯(cuò)角相等,兩直線平行。

判定3:同旁內(nèi)角相等,兩直線平行。

第六章

平面直角坐標(biāo)系

二.知識概念

1.有序數(shù)對:有順序的兩個(gè)數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)

2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。

3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

4.坐標(biāo):對于平面內(nèi)任一點(diǎn)p,過p分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)p的橫坐標(biāo)和縱坐標(biāo)。

5.象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針方向一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。

第七章

三角形

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。

5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。

10.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質(zhì)

三角形的內(nèi)角和:三角形的內(nèi)角和為180°

三角形外角的性質(zhì):

性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

多邊形的外角和:多邊形的內(nèi)角和為360°。

多邊形對角線的條數(shù):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個(gè)三角形。

(2)n邊形共有條對角線。

第八章

二元一次方程組

二、知識概念

1.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次。方程,一般形式是

ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個(gè)方程的公共解叫做二元一次方程組。

5.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡稱加減法。

第九章

不等式與不等式組

二、知識概念

1.用符號“<”“>”“≤

”“≥”表示大小關(guān)系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

3.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成6.了一個(gè)一元一次不等式組。

7.定理與性質(zhì)

不等式的性質(zhì):

不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號的方向不變。

不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變。

不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。

本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決實(shí)際問題的過程,體會不等式(組)的特點(diǎn)和作用,掌握運(yùn)用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強(qiáng)創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識。

第十章

數(shù)據(jù)的收集、整理與描述

二.知識概念

1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。

2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查。

3.總體:要考察的全體對象稱為總體。

4.個(gè)體:組成總體的每一個(gè)考察對象稱為個(gè)體。

5.樣本:被抽取的所有個(gè)體組成一個(gè)樣本。

6.樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量。

7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)。

8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

9.組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距。

八年級數(shù)學(xué)(上)知識點(diǎn)

人教版八年級上冊主要包括全等三角形、軸對稱、實(shí)數(shù)、一次函數(shù)和

整式的乘除與分解因式五個(gè)章節(jié)的內(nèi)容。

第十一章

全等三角形

二.知識概念

1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。

2.全等三角形的性質(zhì):

全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“sas”

(2)“角邊角”簡稱“asa”

(3)“邊邊邊”簡稱“sss”

(4)“角角邊”簡稱“aas”

(5)斜邊和直角邊相等的兩直角三角形(hl)。

4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會到集合的真正魅力。

第十二章

軸對稱

二.知識概念

1.對稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質(zhì):

(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

(2)角平分線上的點(diǎn)到角兩邊距離相等。

(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。

3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,7.等邊三角形的判定:

三個(gè)角都相等的三角形是等腰三角形。

有一個(gè)角是60°的等腰三角形是等邊三角形

有兩個(gè)角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等于斜邊的一半。

9.直角三角形斜邊上的中線等于斜邊的一半。

本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

第十三章

實(shí)數(shù)

一.知識框架

二.知識概念

1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。

2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。

4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0

實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),能估算無理數(shù)的大??;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。

第十四章

一次函數(shù)

二.知識概念

(1)

(3)

(2)

(1)

(2)

(3)

1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。

3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;

當(dāng)k<0時(shí),y隨x的增大而減小。

4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法

第十五章

整式的乘除與分解因式

一.知識概念

1.同底數(shù)冪的乘法法則:

(m,n都是正數(shù))

2..冪的乘方法則:(m,n都是正數(shù))

3.整式的乘法

(1)

單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

(3).多項(xiàng)式與多項(xiàng)式相乘

多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

4.平方差公式:

5.完全平方公式:

6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即

(a≠0,m、n都是正數(shù),且m>n).在應(yīng)用時(shí)需要注意以下幾點(diǎn):

①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.②任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的;

當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如,④運(yùn)算要注意運(yùn)算順序.7.整式的除法

單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

多項(xiàng)式除以單項(xiàng)式:

多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.分解因式的一般方法:1.提公共因式法2.運(yùn)用公式法3.十字相乘法

分解因式的步驟:(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;

(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.整式的乘除與分解因式這章內(nèi)容知識點(diǎn)較多,表面看來零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。

八年級數(shù)學(xué)(下)知識點(diǎn)

人教版八年級下冊主要包括了分式、反比例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分析五章內(nèi)容。

第十六章

分式

二.知識概念

1.分式:形如a/b,a、b是整式,b中含有未知數(shù)且b不等于0的整式叫做分式(fraction)。其中a叫做分式的分子,b叫做分式的分母。

2.分式有意義的條件:分母不等于0

3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。

4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為0的整式,分式的值不變。用式子表示為:a/b=a*c/b*c

a/b=a÷c/b÷c

(a,b,c為整式,且c≠0)

5.最簡分式:一個(gè)分式的分子和分母沒有公因式時(shí),這個(gè)分式稱為最簡分式.約分時(shí),一般將一個(gè)分式化為最簡分式.6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c

2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:a/b±c/d=ad±cb/bd

3.分式的乘法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b

*

c/d=ac/bd

4.分式的除法法則:(1).兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc

(2).除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/b÷c/d=a/b*d/c

7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.8.分式方程的解法:①去分母(方程兩邊同時(shí)乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時(shí),可以對比分?jǐn)?shù)的特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問題。

第十七章

反比例函數(shù)

二.知識概念

1.反比例函數(shù):形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k

2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和

y=-x。對稱中心是:原點(diǎn)

3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減??;

當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。

4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。

在學(xué)習(xí)反比例函數(shù)時(shí),教師可讓學(xué)生對比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對比性學(xué)習(xí)。在做題時(shí),培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。

第十八章????勾股定理

知識概念

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。

2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。

3.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會利用這個(gè)定理解決實(shí)際問題??梢酝ㄟ^自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識的感受

第十九章????四邊形

二.知識概念

1.平行四邊形定義:

有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。

3.平行四邊形的判定

.兩組對邊分別相等的四邊形是平行四邊形

.對角線互相平分的四邊形是平行四邊形;

.兩組對角分別相等的四邊形是平行四邊形;

一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

5.直角三角形斜邊上的中線等于斜邊的一半。

6.矩形的定義:有一個(gè)角是直角的平行四邊形。

7.矩形的性質(zhì):

矩形的四個(gè)角都是直角;矩形的對角線平分且相等。ac=bd

8.矩形判定定理:

.有一個(gè)角是直角的平行四邊形叫做矩形。

.對角線相等的平行四邊形是矩形。

.有三個(gè)角是直角的四邊形是矩形。

9.菱形的定義

:鄰邊相等的平行四邊形。

10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

11.菱形的判定定理:.一組鄰邊相等的平行四邊形是菱形。

對角線互相垂直的平行四邊形是菱形。

四條邊相等的四邊形是菱形。

12.s菱形=1/2×ab(a、b為兩條對角線)

13.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

14.正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。

正方形既是矩形,又是菱形。

15.正方形判定定理:

1.鄰邊相等的矩形是正方形。

2.有一個(gè)角是直角的菱形是正方形。

16.梯形的定義:

一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

17.直角梯形的定義:有一個(gè)角是直角的梯形

18.等腰梯形的定義:兩腰相等的梯形。

19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等。

20.等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。

本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學(xué)時(shí)可以多鼓勵(lì)學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對知識的把握。

第二十章

數(shù)據(jù)的分析

二.知識概念

1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。

權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。

2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計(jì)意識和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實(shí)例為主,讓學(xué)生體會到數(shù)據(jù)在生活中的重要性。

九年級數(shù)學(xué)(上)知識點(diǎn)

人教版九年級數(shù)學(xué)上冊主要包括了二次根式、二元一次方程、旋轉(zhuǎn)、圓和概率五個(gè)章節(jié)的內(nèi)容。

第二十一章

二次根式

一.知識框架

二.知識概念

二次根式:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,其中√0=0

對于本章內(nèi)容,教學(xué)中應(yīng)達(dá)到以下幾方面要求:

1.理解二次根式的概念,了解被開方數(shù)必須是非負(fù)數(shù)的理由;

2.了解最簡二次根式的概念;

3.理解并掌握下列結(jié)論:

1)是非負(fù)數(shù);(2);(3);

4.掌握二次根式的加、減、乘、除運(yùn)算法則,會用它們進(jìn)行有關(guān)實(shí)數(shù)的簡單四則運(yùn)算;

5.了解代數(shù)式的概念,進(jìn)一步體會代數(shù)式在表示數(shù)量關(guān)系方面的作用。

第二十二章

一元二次根式

二.知識概念

一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

本章內(nèi)容主要要求學(xué)生在理解一元二次方程的前提下,通過解方程來解決一些實(shí)際問題。

(1)運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程;領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想.

(2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化二次項(xiàng)系數(shù)為1;常數(shù)項(xiàng)移到右邊;方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程無實(shí)根.

介紹配方法時(shí),首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個(gè)內(nèi)容會有進(jìn)一步的理解。

(3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此:

解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a、b、c代入式子x=就得到方程的根.(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過的六中運(yùn)算,加、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。)這個(gè)式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.

第二十三章

旋轉(zhuǎn)

二.知識概念

1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動一個(gè)角度,這樣的運(yùn)動叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)

2.旋轉(zhuǎn)對稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對稱圖形。

中心對稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對稱。

4.中心對稱的性質(zhì):

關(guān)于中心對稱的兩個(gè)圖形是全等形。

關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。

關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或者在同一直線上)且相等。

本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實(shí)際問題中體驗(yàn)數(shù)學(xué)的快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。

第二十四章

一.知識框架

二.知識概念

1.圓:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

2.圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.內(nèi)心和外心:過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑稱為圓錐的母線。

7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)p與圓o的為例(設(shè)p是一點(diǎn),則po是點(diǎn)到圓心的距離),p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o內(nèi),po<r。

8.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

9.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為r和r,且r≥r,圓心距為p:外離p>r+r;外切p=r+r;相交r-r<p<r+r;內(nèi)切p=r-r;內(nèi)含p<r-r。

10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。

11.切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

13.有關(guān)定理:

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?/p>

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

14.圓的計(jì)算公式1.圓的周長c=2πr=πd

2.圓的面積s=πr^2;

3.扇形弧長l=nπr/180

15.扇形面積s=π(r^2-r^2)

5.圓錐側(cè)面積s=πrl

第二十五章

概率

九年級數(shù)學(xué)(下)知識點(diǎn)

人教版九年級數(shù)學(xué)下冊主要包括了二次函數(shù)、相似、銳角三角形、投影與視圖四個(gè)章節(jié)的內(nèi)容。

第二十六章

二次函數(shù)

二..知識概念

1.二次函數(shù):一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。

2.二次函數(shù)的解析式三種形式。

一般式

y=ax2

+bx+c(a≠0)

頂點(diǎn)式

交點(diǎn)式

3.二次函數(shù)圖像與性質(zhì)

y

x

o

對稱軸:

頂點(diǎn)坐標(biāo):

與y軸交點(diǎn)坐標(biāo)(0,c)

4.增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減??;對稱軸右邊,y隨x增大而增大

當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小

5.二次函數(shù)圖像畫法:

勾畫草圖關(guān)鍵點(diǎn):開口方向

對稱軸

頂點(diǎn)

與x軸交點(diǎn)

與y軸交點(diǎn)

6.圖像平移步驟

(1)配方,確定頂點(diǎn)(h,k)

(2)對x軸

左加右減;對y軸

上加下減

7.二次函數(shù)的對稱性

二次函數(shù)是軸對稱圖形,有這樣一個(gè)結(jié)論:當(dāng)橫坐標(biāo)為x1,x2

其對應(yīng)的縱坐標(biāo)相等那么對稱軸

8.根據(jù)圖像判斷a,b,c的符號

(1)a

——開口方向

(2)b

——對稱軸與a

左同右異

9.二次函數(shù)與一元二次方程的關(guān)系

拋物線y=ax2

+bx+c與x軸交點(diǎn)的橫坐標(biāo)x1,x2

是一元二次方程ax2

+bx+c=0(a≠0)的根。

拋物線y=ax2

+bx+c,當(dāng)y=0時(shí),拋物線便轉(zhuǎn)化為一元二次方程ax2

+bx+c=0

>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)根,二次函數(shù)圖像與x軸有兩個(gè)交點(diǎn);

=0時(shí),一元二次方程有兩個(gè)相等的實(shí)根,二次函數(shù)圖像與x軸有一個(gè)交點(diǎn);

<0時(shí),一元二次方程有不等的實(shí)根,二次函數(shù)圖像與x軸沒有交點(diǎn)

二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).教師在講解本章內(nèi)容時(shí)應(yīng)注重培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和獨(dú)立思考問題的能力。

第二十七章

相似

二.知識概念:

1.相似三角形:對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。互為相似形的三角形叫做相似三角形

2.相似三角形的判定方法:

根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)角相等)

.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;

.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似;

如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似;

如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

3.直角三角形相似判定定理:

.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。

.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。

4.相似三角形的性質(zhì):

.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。

相似三角形周長的比等于相似比。

.相似三角形面積的比等于相似比的平方。

本章內(nèi)容通過對相似三角形的學(xué)習(xí),培養(yǎng)學(xué)生認(rèn)識和觀察事物的能力和利用所學(xué)知識解決實(shí)際問題的能力。

第二十八章

銳角三角函數(shù)

二.知識概念

△abc中

(1)∠a的對邊與斜邊的比值是∠a的正弦,記作sina=

(2)∠a的鄰邊與斜邊的比值是∠a的余弦,記作cosa=

(3)∠a的對邊與鄰邊的比值是∠a的正切,記作tana=

(4)∠a的鄰邊與對邊的比值是∠a的余切,記作cota=

2.特殊值的三角函數(shù):

a

sina

cosa

tana

cota

30°

45°

60°

第二十九章

投影與視圖

初中數(shù)學(xué)分式計(jì)算篇四

七年級數(shù)學(xué)(上)知識點(diǎn):

有理數(shù)、整式的加減、一元一次方程、圖形的認(rèn)識初步四個(gè)章節(jié)的內(nèi)容.第一章 有理數(shù)

1.有理數(shù):

(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)

稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)

數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類: ① ②

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.3.相反數(shù):

(1)只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);

注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;(2)絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論; 5.有理數(shù)比大?。?/p>

(1)正數(shù)的絕對值越大,這個(gè)數(shù)越大;

(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0??;

(3)正數(shù)大于一切負(fù)數(shù);

(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;

(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;

(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);

注意:0沒有倒數(shù);若 a≠0,那么 的倒數(shù)是1/a;

若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負(fù)倒數(shù).7.有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a ;

(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).10 有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負(fù)因式的個(gè)數(shù)決定.11.有理數(shù)乘法的運(yùn)算律:(1)乘法的交換律:ab=ba;

(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù).13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);

注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí):(-a)n =an

或(a-b)n=(b-a)n.14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪; 15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a310n的形式,其中a是整數(shù)數(shù)位只有一位的 數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似

數(shù)的有效數(shù)字.18.混合運(yùn)算法則:先乘方,后乘除,最后加減.第二章 整式的加減

1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中 不含字母的一類代數(shù)式叫單項(xiàng)式.2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式 的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫 多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。

第三章 一元一次方程

1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不 是零的整式方程是一元一次方程.2.一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).3.一元一次方程解法的一般步驟: 整理方程 ?? 去分母 ?? 去括號 ?? 移項(xiàng) ?? 合并同類項(xiàng) ?? 系數(shù)化為1 ??(檢驗(yàn)方程的解).4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:???? 多用于“和,差,倍,分問題” 仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法: ???? 多用于“行程問題” 利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).11.列方程解應(yīng)用題的常用公式:

(1)行程問題:距離=速度2時(shí)間;(2)工程問題:工作量=工效2工時(shí);(3)比率問題:部分=全體2比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價(jià)格問題:售價(jià)=定價(jià)2折,利潤=售價(jià)-成本;

(6)周長、面積、體積問題:c圓=2πr,s圓=πr2,c長方形=2(a+b),s長方形=ab,c正方形=4a,s正方形=a2,s環(huán)形=π(r2-r2), v長方體=abc,v正方體=a3,v圓柱=πr2h,v圓錐= πr2h.七年級數(shù)學(xué)(下)知識點(diǎn)

相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述

第二章 相交線與平行線

1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。2.對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角。3.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。5.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

內(nèi)錯(cuò)角:∠2與∠6像這樣的一對角叫做內(nèi)錯(cuò)角。

同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動一定的距離,圖形的這種移動叫做平移

平移變換,簡稱平移。

8.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣 的兩個(gè)點(diǎn)叫做對應(yīng)點(diǎn)。

9.定理與性質(zhì) 對頂角的性質(zhì):對頂角相等。10.垂線的性質(zhì):

性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。11.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。12.平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。

性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內(nèi)錯(cuò)角相等,兩直線平行。

判定3:同旁內(nèi)角相等,兩直線平行。

第三章平面直角坐標(biāo)系

1.有序數(shù)對:有順序的兩個(gè)數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)

2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo) 軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

4.坐標(biāo):對于平面內(nèi)任一點(diǎn)p,過p分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)p的橫坐標(biāo)和縱坐標(biāo)。

5.象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針方向一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。

第四章 三角形

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間 的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。10.多邊形的對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。13.公式與性質(zhì) 三角形的內(nèi)角和:三角形的內(nèi)角和為180°

三角形外角的性質(zhì):

性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)2180°

多邊形的外角和:多邊形的內(nèi)角和為360°。

多邊形對角線的條數(shù):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個(gè)三角形。

(2)n邊形共有 條對角線。

第八章 二元一次方程組

1.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一

次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個(gè)方程的公共解叫做二元一次方程組。

5.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。7.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡稱加減法。

第九章

不等式與不等式組

1.用符號“<”“>”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

3.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。6.定理與性質(zhì) 不等式的性質(zhì):

不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號的方向不變。不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變。

不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變。

第十章 數(shù)據(jù)的收集、整理與描述

1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。

2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查。3.總體:要考察的全體對象稱為總體。4.個(gè)體:組成總體的每一個(gè)考察對象稱為個(gè)體。5.樣本:被抽取的所有個(gè)體組成一個(gè)樣本。6.樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量。

7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)。8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

9.組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距。

八年級數(shù)學(xué)(上)知識點(diǎn)

全等三角形、軸對稱、實(shí)數(shù)、一次函數(shù)和 整式的乘除與分解因式

第十一章 全等三角形

1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運(yùn)動(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。2.全等三角形的性質(zhì):

全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“sas”

(2)“角邊角”簡稱“asa”

(3)“邊邊邊”簡稱“sss”

(4)“角角邊”簡稱“aas”

(5)斜邊和直角邊相等的兩直角三角形(hl)。4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

第十二章

軸對稱

1.對稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

(2)角平分線上的點(diǎn)到角兩邊距離相等。

(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。

(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°

7.等邊三角形的判定: ★三個(gè)角都相等的三角形是等腰三角形。

★有一個(gè)角是60°的等腰三角形是等邊三角形

★有兩個(gè)角是60°的三角形是等邊三角形。8.直角三角形中,30°角所對的直角邊等于斜邊的一半。9.直角三角形斜邊上的中線等于斜邊的一半。

第十三章 實(shí)數(shù)

1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;

負(fù)數(shù)沒有平方根。、4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0

第十四章

一次函數(shù)

1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例

函數(shù)。

2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大

當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小

在一次函數(shù)y=kx+b中: 當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。第十五章

整式的乘除與分解因式 1.同底數(shù)冪的乘法法則:(m,n都是正數(shù))2.冪的乘方法則:(m,n都是正數(shù))3.整式的乘法(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。

(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式

去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

(3)多項(xiàng)式與多項(xiàng)式相乘 多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一

項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。4.平方差公式: 5.完全平方公式: 6.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n).在應(yīng)用時(shí)需要注意以下幾點(diǎn): ①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.②任何不等于0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù), 即(a≠0,p是正整數(shù)), 而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的;當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的, ④運(yùn)算要注意運(yùn)算順序.7.整式的除法 單項(xiàng)式除法單項(xiàng)式: 單項(xiàng)式相除:把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;

多項(xiàng)式除以單項(xiàng)式: 多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.8.分解因式:

分解因式的一般方法:1.提公共因式法2.運(yùn)用公式法3.十字相乘法 分解因式的步驟:

八年級數(shù)學(xué)(下)知識點(diǎn)

分式、反比例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分析。

第十六章

分式

1.分式:形如a/b,a、b是整式,b中含有未知數(shù)且b不等于0的整式叫做分式(fraction)。其中a叫做分式的分子,b叫做分式的分母。2.分式有意義的條件:分母不等于0 3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。分式的基本性質(zhì): ★a/b=a*c/b*c a/b=a÷c/b÷c(a,b,c為整式,且c≠0)

5.最簡分式:一個(gè)分式的分子和分母沒有公因式時(shí),這個(gè)分式稱為最簡分式.約分時(shí),一般將一個(gè)分式化為最簡分式.分式的四則運(yùn)算:1.同分母分式加減法則:a/c±b/c=a±b/c

2.異分母分式加減法則:a/b±c/d=ad±cb/bd

3.分式的乘法法則:a/b * c/d=ac/bd

4.分式的除法法則:a/b÷c/d=ad/bc a/b÷c/d=a/b*d/c 6.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.第十七章

反比例函數(shù)

1.反比例函數(shù):形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k

2.圖像:反比例函數(shù)的圖像屬于雙曲線。

反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。

有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點(diǎn)

3.性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減??;

當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。

第十八章

勾股定理

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。3.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。

如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

第十九章 四邊形

1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。2.平行四邊形的性質(zhì):平行四邊形的對邊相等;

平行四邊形的對角相等。平行四邊形的對角線互相平分。3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形

2.對角線互相平分的四邊形是平行四邊形;

3.兩組對角分別相等的四邊形是平行四邊形; 4.一組對邊平行且相等的四邊形是平行四邊形。4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。5.直角三角形斜邊上的中線等于斜邊的一半。6.矩形的定義:有一個(gè)角是直角的平行四邊形。

7.矩形的性質(zhì):(※)矩形的四個(gè)角都是直角;矩形的對角線平分且相等。ac=bd 8.矩形判定定理:(※)1.有一個(gè)角是直角的平行四邊形叫做矩形。

2.對角線相等的平行四邊形是矩形。

3.有三個(gè)角是直角的四邊形是矩形。9.菱形的定義 :鄰邊相等的平行四邊形。10.菱形的性質(zhì):(※)菱形的四條邊都相等;

菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。11.菱形的判定定理:(※)1.一組鄰邊相等的平行四邊形是菱形。2.對角線互相垂直的平行四邊形是菱形。

3.四條邊相等的四邊形是菱形。12.s菱形=1/23ab(a、b為兩條對角線)

13.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。14.正方形的性質(zhì):(※)四條邊都相等,四個(gè)角都是直角。正方形既是矩形,又是菱形。15.正方形判定定理:(※)1.鄰邊相等的矩形是正方形。

2.有一個(gè)角是直角的菱形是正方形。

16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。17.直角梯形的定義:有一個(gè)角是直角的梯形 18.等腰梯形的定義:兩腰相等的梯形。

19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對角線相等。20.等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。

第二十章

數(shù)據(jù)的分析

1.加權(quán)平均數(shù):權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。

2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

九年級數(shù)學(xué)(上)知識點(diǎn)

二次根式、二元一次方程、旋轉(zhuǎn)、圓和概率五個(gè)章節(jié)的內(nèi)容。

第二十一章

二次根式

二次根式:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,其中√0=0 第二十二章

一元二次根式

一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個(gè)關(guān)于x的一元二次方程,?經(jīng)過整理,?都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

第二十三章

旋轉(zhuǎn)

1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動一個(gè)角度,這樣的運(yùn)動叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)2.旋轉(zhuǎn)對稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對稱圖形。

中心對稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對稱。

4.中心對稱的性質(zhì): 關(guān)于中心對稱的兩個(gè)圖形是全等形。

關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。

關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或者在同一直線上)且相等。

第二十四章

1.圓:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。

2.圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

4.內(nèi)心和外心:過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑稱為圓錐的母線。

7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)p與圓o的為例(設(shè)p是一點(diǎn),則po是點(diǎn)到圓心的距離),p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o內(nèi),po<r。

8.直線與圓有3種位置關(guān)系

無公共點(diǎn)為相離; 有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;

圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。9.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;

有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;

有兩個(gè)公共點(diǎn)的叫相交。

兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為r和r,且r≥r,圓心距為p:

外離p>r+r;外切p=r+r;相交r-r<p<r+r;內(nèi)切p=r-r;內(nèi)含p<r-r。10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。11.切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。

(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。

(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。13.有關(guān)定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑. 14.圓的計(jì)算公式: 1.圓的周長c=2πr=πd 2.圓的面積s=πr^2;3.扇形弧長l=nπr/180 4.扇形面積s=π(r^2-r^2)5.圓錐側(cè)面積s=πrl

九年級數(shù)學(xué)(下)知識點(diǎn)

二次函數(shù)、相似、銳角三角形、投影與視圖四個(gè)章節(jié)的內(nèi)容。

第二十六章

二次函數(shù)

1.二次函數(shù):一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。2.二次函數(shù)的解析式三種形式:一般式 y=ax2 +bx+c(a≠0)頂點(diǎn)式

交點(diǎn)式

3.二次函數(shù)圖像與性質(zhì)

對稱軸:x=-b/2a 頂點(diǎn)坐標(biāo):(-b/2a,4ac-b2/4a)與y軸交點(diǎn)坐標(biāo)(0,c)

4.增減性: 當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減小; 對稱軸右邊,y隨x增大而增大

當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;

對稱軸右邊,y隨x增大而減小

5.二次函數(shù)圖像畫法: 勾畫草圖關(guān)鍵點(diǎn):1開口方向 2對稱軸 3頂點(diǎn) 4與x軸交點(diǎn) 5與y軸交點(diǎn) 6.圖像平移步驟(1)配方,確定頂點(diǎn)(h,k)

(2)對x軸 左加右減;對y軸 上加下減 7.二次函數(shù)的對稱性 二次函數(shù)是軸對稱圖形

有這樣一個(gè)結(jié)論:當(dāng)橫坐標(biāo)為x1, x2 其對應(yīng)的縱坐標(biāo)相等那么對稱軸 2x=x1+x2 8.根據(jù)圖像判斷a,b,c的符號(1)a ——開口方向

(2)b ——對稱軸與a 左同右異 9.二次函數(shù)與一元二次方程的關(guān)系: 拋物線y=ax2 +bx+c與x軸交點(diǎn)的橫坐標(biāo)x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。

拋物線y=ax2 +bx+c,當(dāng)y=0時(shí),拋物線便轉(zhuǎn)化為一元二次方程ax2 +bx+c=0 >0時(shí),一元二次方程有兩個(gè)不相等的實(shí)根,二次函數(shù)圖像與x軸有兩個(gè)交點(diǎn); =0時(shí),一元二次方程有兩個(gè)相等的實(shí)根,二次函數(shù)圖像與x軸有一個(gè)交點(diǎn); <0時(shí),一元二次方程有不等的實(shí)根,二次函數(shù)圖像與x軸沒有交點(diǎn)

第二十七章

相似

1.相似三角形:對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形?;橄嗨菩蔚娜切谓凶鱿嗨迫切?/p>

2.相似三角形的判定方法: 根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)角相等)1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;

2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似; 3.如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似;

4.如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

3.直角三角形相似判定定理:

1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。

2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。4.相似三角形的性質(zhì):

(1)相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。

(2)相似三角形周長的比等于相似比。

(3)相似三角形面積的比等于相似比的平方。

第二十八章

銳角三角函數(shù) △abc中(1)∠a的對邊與斜邊的比值是∠a的正弦,記作sina=(2)∠a的鄰邊與斜邊的比值是∠a的余弦,記作cosa=(3)∠a的對邊與鄰邊的比值是∠a的正切,記作tana=(4)∠a的鄰邊與對邊的比值是∠a的余切,記作cota= 2.特殊值的三角函數(shù): a sina cosa tana cota 30° 45° 1 1 60°

初中數(shù)學(xué)分式計(jì)算篇五

初中數(shù)學(xué)知識點(diǎn)總結(jié)

一、基本知識

(一)、數(shù)與代數(shù) a、數(shù)與式:

1、有理數(shù)有理數(shù): ①整數(shù):正整數(shù)、0、負(fù)整數(shù); ②分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù); 數(shù)軸:

①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。

②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

③如果兩個(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。絕對值:

①在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。

②正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。有理數(shù)的運(yùn)算: 加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

③一個(gè)數(shù)與0相加不變。

減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。乘法:

①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。②任何數(shù)與0相乘得0。

③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

除法:①除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。

乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,an乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

2、實(shí)數(shù)

無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)平方根:

①如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。②如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。③一個(gè)正數(shù)有2個(gè)平方根,0的平方根為0,負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。立方根:

①如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。實(shí)數(shù):

①實(shí)數(shù)分有理數(shù)和無理數(shù)。

②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的

意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

3、代數(shù)式:

代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。合并同類項(xiàng):

①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

4、整式與分式

整式:

①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。

aammn?an?am?nm?n冪的運(yùn)算: a?an(ab)()ban?a?b?abnnnn ;

整式的乘法:

①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

公式兩條:平方差公式:a2?b2?(a?b)(a?b);完全平方公式:(a?b)2?a2?2ab?b2 整式的除法:

①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;

對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。分式:

①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不能為0。

②分式的分子與分母同乘以或除以同一個(gè)不等于的整式,分式的值不變。...0.分式的運(yùn)算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。加減法:

①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。分式方程:

①分母中含有未知數(shù)的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。b、方程與不等式

1、方程與方程組 一元一次方程:

①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),將未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法、加減消元法。

一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系

二次函數(shù)(如拋物線y?ax2?bx?c),一元二次方程的解可在二次函數(shù)圖象中表示,一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)y為0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與x軸的交點(diǎn)就是該方程的解。

2)一元二次方程的解法:二次函數(shù)圖像有頂點(diǎn):(?b2a,4ac?b4a2),利用他可以求出所有的一元二次方程的解

(1)配方法:利用配方,使方程變?yōu)橥耆椒焦?,再開平方法去求解。

(2)分解因式法:提取公因式,利用公式法、十字相乘法。把方程化為幾個(gè)乘積的形式去解(3)公式法:這方法也可以是在解一元二次方程的萬能方法了,?b?b?4ac?b?b?4ac2ax?bx?c?(x?)(x?)?0 2a2a ?b?b?4ac?b?b?4ac,x2?;為: 方程的根x1?2a2a3)解一元二次方程的步驟:

(1)配方法的步驟:先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

(2)分解因式法的步驟:把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

(3)公式法:就把一元二次方程的各系數(shù)分別代入,二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c 4)韋達(dá)定理:韋達(dá)定理就是在一元二次方程中,二根之和x1?x2??ba,二根之積:x1?x2?ca

利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用 5)一元一次方程根的情況: 根的判別式: ??,i當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根; ii當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

iii當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;

2、不等式與不等式組 不等式:

①用符號“>”,或“<”,號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個(gè)整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號方向相反。不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。一元一次不等式組:

①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。一元一次不等式的符號方向:

在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運(yùn)算改變。在不等式中,如果加上同一個(gè)數(shù),不等式符號不改向;例如: 若a?b,則a?c?b?c。在不等式中,如果減去同一個(gè)數(shù),不等式符號不改向;例如:若a?b,則a?c?b?c。在不等式中,如果乘以同一個(gè)正數(shù),不等號不改向;例如:若a?b,則a?c?b?c(c?0)。在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號反向;例如:若a?b,則a?c?b?c(c?0)。如果不等式乘以0,那么不等號改為等號

所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

3、函數(shù):

變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸x上的點(diǎn)表示自變量,用豎直方向的數(shù)軸y上的點(diǎn)表示因變量。一次函數(shù):

①若兩個(gè)變量x、y間的關(guān)系式可以表示成:y?kx?b(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。

②當(dāng)b=0時(shí),即:y?kx(k?0)稱y是x的正比例函數(shù)。

一次函數(shù)的圖象:

①把一個(gè)函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)y?kx(k?0)的圖象是經(jīng)過原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)k<0,b0,b>0時(shí),則經(jīng)1、2、4象限;當(dāng)k>0,b<0時(shí),則經(jīng)1、3、4象限;當(dāng)k>0,b>0時(shí),則經(jīng)1、2、3象限。

④當(dāng)k>0時(shí),y的值隨x值的增大而增大,當(dāng)k<0時(shí),y的值隨x值的增大而減少。(二)空間與圖形 a、圖形的認(rèn)識

1、點(diǎn),線,面:

①圖形是由點(diǎn),線,面構(gòu)成的。

②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動成線,線動成面,面動成體。展開與折疊:

①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②n棱柱就是底面圖形有n條邊的棱柱。

截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形?;?、扇形:

①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。

2、角 線:

①線段有兩個(gè)端點(diǎn)。

②將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。④經(jīng)過兩點(diǎn)有且只有一條直線。比較長短:

①兩點(diǎn)之間的所有連線中,線段最短。

②兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。角的度量與表示:

①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

②一度的160是一分,一分的160是一秒。1°=60′;1′=60″;

角的比較:

①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。

③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。平行:

①同一平面內(nèi),不相交的兩條直線叫做平行線。

②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

③如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。垂直:

①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。

③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根射線和直線可以無限延長有關(guān),垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了兩點(diǎn)后,一定要把線段穿出兩點(diǎn)。角平分線:把一個(gè)角平分的射線叫該角的角平分線。

定義中有幾個(gè)要點(diǎn)要注意,○1角的角平分線是一條射線,不是線段也不是直線,在題目中會出現(xiàn)直線,這是角平分線作為對稱軸才會用直線的,這也涉及到軌跡的問題,○2一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的軌跡。正方形:一組鄰邊相等的矩形是正方形

性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:

1、對角線相等的菱形

2、鄰邊相等的矩形

二、基本定理

1、過兩點(diǎn)有且只有一條直線

2、兩點(diǎn)之間線段最短

3、同角或等角的補(bǔ)角相等

4、同角或等角的余角相等

5、過一點(diǎn)有且只有一條直線和已知直線垂直

6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7、平行公理: 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內(nèi)錯(cuò)角相等,兩直線平行

11、同旁內(nèi)角互補(bǔ),兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內(nèi)錯(cuò)角相等

14、兩直線平行,同旁內(nèi)角互補(bǔ)

15、定理: 三角形兩邊的和大于第三邊

16、推論: 三角形兩邊的差小于第三邊

17、三角形內(nèi)角和定理: 三角形三個(gè)內(nèi)角的和等于180°

18、推論1: 直角三角形的兩個(gè)銳角互余

19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21、全等三角形的對應(yīng)邊、對應(yīng)角相等

22、邊角邊公理(sas): 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

23、角邊角公理(asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

24、推論(aas):有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

25、邊邊邊公理(sss):有三邊對應(yīng)相等的兩個(gè)三角形全等

26、斜邊、直角邊公理(hl):有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對等角)

31、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°

34、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

35、推論1:三個(gè)角都相等的三角形是等邊三角形

36、推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊的一半

39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42、定理1:關(guān)于某條直線對稱的兩個(gè)圖形是全等形

43、定理2:如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

44、定理3:兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

45、逆定理:如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

46、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即:a2?b2?c2

47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a2?b2?c2,那么這個(gè)三角形是直角三角形

48、定理:四邊形的內(nèi)角和等于360°

49、四邊形的外角和等于360°

50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n-2)×180°

51、推論:任意多邊的外角和等于360°

52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等

53、平行四邊形性質(zhì)定理2:平行四邊形的對邊相等

54、推論:夾在兩條平行線間的平行線段相等

55、平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分

56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形

58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2:矩形的對角線相等

62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2:對角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1:菱形的四條邊都相等

65、菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角 66、菱形面積等于對角線乘積的一半,即:s?12ab

67、菱形判定定理1:四邊都相等的四邊形是菱形

68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形

69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等

70、正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71、定理1:關(guān)于中心對稱的兩個(gè)圖形是全等的

72、定理2:關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分 73、逆定理:如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱

74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80、推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

l?12(a?b)82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半

s?acd12?

(a?b)?h?l?hcd83、(1)比例的基本性質(zhì):如果:?b,那么ad?bc;如果:ad?bc,那么:a?bb?c?dab。

84、(2)合比性質(zhì): 如果:?bacdc,那么:???mn85、(3)等比性質(zhì): 如果:?bad,那么:da?c???mb?d???n

?ab?cd

86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例 87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例 88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

91、相似三角形判定定理1 :兩角對應(yīng)相等,兩三角形相似(asa)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)94、判定定理3:三邊對應(yīng)成比例,兩三角形相似(sss)

95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

96、性質(zhì)定理1:相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比 97、性質(zhì)定理2:相似三角形周長的比等于相似比

98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101、圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合

102、圓的內(nèi)部可以看作是到圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等

105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓 106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是這條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。

110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112、推論2:圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對稱中心的中心對稱圖形

114、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都相等

116、定理:一條弧所對的圓周角等于它所對的圓心角的一半

117、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119、推論3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

121、①直線l和⊙o相交:d<r ②直線l和⊙o相切:d=r ③直線l和⊙o相離:d>r 122、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124、推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125、推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

126、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等;圓心和這一點(diǎn)的連線平分兩條切線的夾角

127、圓的外切四邊形的兩組對邊的和相等

128、弦切角定理 弦切角等于它所夾的弧對的圓周角

129、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

130、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

131、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

133、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、兩圓的位臵關(guān)系(假設(shè):r?r):①兩圓外離:d?r?r ②兩圓外切:d?r?r

③兩圓相交r?r?d?r?r,④兩圓內(nèi)切 d?r?r,⑤兩圓內(nèi)含d?r?r。136、定理:相交兩圓的連心線垂直平分兩圓的公共弦 137、定理:把圓分成n等分(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

139、正n邊形的每個(gè)內(nèi)角都等于:12n?2n?180o

140、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積:sn?pn?rn 其中:pn為正n邊形的周長,rn為弦心距。

142、邊長為a的正三角形面積:s?

143、弧長計(jì)算公式: l?n18034a2

??r 其中n為角度數(shù)。n??r3602144、扇形面積公式: s扇形??12l?r

145.圓錐側(cè)面積公式:s= 146.圓錐側(cè)面?zhèn)让嬲归_圖圓心角的度數(shù):

三、常用數(shù)學(xué)公式

公式分類 公式表達(dá)式

22乘法與因式分解 a?b?(a?b)(a?b)

一元二次方程ax2?bx?c?0的解為:x1??b?b?4ac2aba2;x2?ca?b?

b?4ac2a

2一元二次方程根與系數(shù)的關(guān)系(韋達(dá)定理): x1?x2??;x1?x2?一元二次方程根的判別式:??b2?4ac

??0:方程有兩個(gè)相等的實(shí)根 ??0:方程有兩個(gè)不等的實(shí)根 ??0:方程沒有實(shí)根,有共軛復(fù)數(shù)根

1?2?3?4?5?6???n?n(n?1)2;2

1?3?5?7?9?11?13?15??(2n?1)?n;2?4?6?8?10?12?14???(2n)?n(n?1);某些數(shù)列前n項(xiàng)和 12?22?32?42?52?62?72?82???n2?n(n?1)(2n?1);61?2?3?4.?5?6???n?3333333

n(n?1)422;n(n?1)(n?2)3;1?2?2?3?3?4?4?5?5?6?6?7???n(n?1)?

四、基本方法

1、配方法:所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式n次冪的形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到。

2、因式分解法:因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

3、換元法:換元法,是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。

4、判別式法與韋達(dá)定理:一元二次方程:ax2?bx?c?0(a、b、c屬于實(shí)數(shù),且a≠0)根的2判別,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),??b?4ac,解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

6、構(gòu)造法:在解題時(shí),我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。

7、反證法:反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè),是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯

一、至少有兩個(gè)。

歸謬,是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

8、面積法:平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添臵輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添臵補(bǔ)助線,即使需要添臵輔助線,也很容易考慮到。

9、幾何變換法:在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。將圖形從相等靜止條件下的研究和運(yùn)動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

10、客觀性題的解題方法

選擇題:是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題:是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。

(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

(5)圖解法:也叫數(shù)形結(jié)合法,借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。

張健 2012-5-22 總結(jié)

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔
猜你喜歡 網(wǎng)友關(guān)注 本周熱點(diǎn) 精品推薦
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?下面我給大家整理了一些優(yōu)
總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價(jià)的書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識上來
當(dāng)工作或?qū)W習(xí)進(jìn)行到一定階段或告一段落時(shí),需要回過頭來對所做的工作認(rèn)真地分析研究一下,肯定成績,找出問題,歸納出經(jīng)驗(yàn)教訓(xùn),提高認(rèn)識,明確方向,以便進(jìn)一步做好工作,
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優(yōu)質(zhì)
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了一
總結(jié)能夠讓我們更好地發(fā)現(xiàn)問題并提出解決方案。寫總結(jié)時(shí),我們要用簡練明了的語言,使讀者能夠輕松理解和接受。以下是小編為大家收集的總結(jié)范文,僅供參考,希望能給大家一
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注
在現(xiàn)在社會,報(bào)告的用途越來越大,要注意報(bào)告在寫作時(shí)具有一定的格式。報(bào)告對于我們的幫助很大,所以我們要好好寫一篇報(bào)告。下面是小編給大家?guī)淼膱?bào)告的范文模板,希望能
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編幫大家整理
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編
“報(bào)告”使用范圍很廣,按照上級部署或工作計(jì)劃,每完成一項(xiàng)任務(wù),一般都要向上級寫報(bào)告,反映工作中的基本情況、工作中取得的經(jīng)驗(yàn)教訓(xùn)、存在的問題以及今后工作設(shè)想等,以
我們在一些事情上受到啟發(fā)后,應(yīng)該馬上記錄下來,寫一篇心得體會,這樣我們可以養(yǎng)成良好的總結(jié)方法。心得體會對于我們是非常有幫助的,可是應(yīng)該怎么寫心得體會呢?下面我?guī)?/div>
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。相信許多人會覺得范文很難寫?以下是我為大家搜
工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過總結(jié)對工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識,以指導(dǎo)今后工作和實(shí)踐
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下
教育的重要性一直被人們所強(qiáng)調(diào),它是個(gè)人和社會發(fā)展的基石。一個(gè)完美的總結(jié)應(yīng)該具備客觀性、準(zhǔn)確性和邏輯性,能夠真實(shí)地反映個(gè)人的成長和收獲。推薦以下幾本書籍,對總結(jié)的
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注
教育是培養(yǎng)人才、繁榮社會的重要保障,它不僅關(guān)乎個(gè)人的發(fā)展,也關(guān)系到國家的未來。一個(gè)好的總結(jié)應(yīng)該具備簡明扼要的特點(diǎn),避免過于冗長和廢話。以下是關(guān)于各個(gè)領(lǐng)域的總結(jié)示
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。諾如病毒防控應(yīng)急預(yù)
報(bào)告應(yīng)該提供充足的事實(shí)和數(shù)據(jù)支持,以增加其信服力。編寫報(bào)告時(shí),要充分考慮讀者的背景知識和專業(yè)水平,采用適當(dāng)?shù)恼Z言和方式進(jìn)行表達(dá)。最后,祝大家在寫作報(bào)告時(shí)能夠取得
總結(jié)是對我們過去努力的一種回報(bào),也是我們未來成長的基石。寫總結(jié)時(shí)要準(zhǔn)確把握要點(diǎn)和重點(diǎn),突出核心內(nèi)容,避免以次要的事項(xiàng)影響文章的重要性。那么,我們來看看下面這些案
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發(fā)揮它最大的作用呢?以下是我為大家搜集
光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計(jì)劃才不會讓我們努力的時(shí)候迷失方向哦。優(yōu)秀的計(jì)劃都具備一些什么特點(diǎn)呢?又該怎么寫呢?以下我
光陰的迅速,一眨眼就過去了,成績已屬于過去,新一輪的工作即將來臨,寫好計(jì)劃才不會讓我們努力的時(shí)候迷失方向哦。我們該怎么擬定計(jì)劃呢?下面是小編為大家?guī)淼挠?jì)劃書優(yōu)
"總結(jié)是對過去的回顧和總結(jié),可以幫助我們更好地規(guī)劃未來的發(fā)展方向。"總結(jié)時(shí)可以通過列舉具體事例或?qū)嶋H案例來加強(qiáng)論證和豐富內(nèi)容。通過閱讀這些總結(jié)范文,我們可以了解
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?以
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面是小
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面我給大家整理了一些優(yōu)
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面我給大家整理了一些優(yōu)
“方”即方子、方法。“方案”,即在案前得出的方法,將方法呈于案前,即為“方案”。那么我們該如何寫一篇較為完美的方案呢?下面是小編精心整理的方案策劃范文,歡迎閱讀
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面我給大家整理了一些優(yōu)
工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過總結(jié)對工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識,以指導(dǎo)今后工作和實(shí)踐
作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫呢?以下是小編為大家收集的教
隨著社會一步步向前發(fā)展,報(bào)告不再是罕見的東西,多數(shù)報(bào)告都是在事情做完或發(fā)生后撰寫的。寫報(bào)告的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家整理的報(bào)告
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參
總結(jié)是在一段時(shí)間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結(jié)了吧。怎樣寫總結(jié)才更能起到其作用呢?總結(jié)應(yīng)該怎么
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?這里我整理了一
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面是小
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?以下是小編為大家收集的優(yōu)
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面我給大家整理了一些優(yōu)秀范文
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧出國
在當(dāng)下社會,接觸并使用報(bào)告的人越來越多,不同的報(bào)告內(nèi)容同樣也是不同的。寫報(bào)告的時(shí)候需要注意什么呢?有哪些格式需要注意呢?這里我整理了一些優(yōu)秀的報(bào)告范文,希望對大
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。相信許多人會覺得范文很難寫?以下是小編為大家收集的優(yōu)
從某件事情上得到收獲以后,寫一篇心得體會,記錄下來,這么做可以讓我們不斷思考不斷進(jìn)步。那么我們寫心得體會要注意的內(nèi)容有什么呢?那么下面我就給大家講一講心得體會怎
在平日里,心中難免會有一些新的想法,往往會寫一篇心得體會,從而不斷地豐富我們的思想。那么心得體會怎么寫才恰當(dāng)呢?下面是小編幫大家整理的心得體會范文大全,供大家參
當(dāng)在某些事情上我們有很深的體會時(shí),就很有必要寫一篇心得體會,通過寫心得體會,可以幫助我們總結(jié)積累經(jīng)驗(yàn)。那么心得體會怎么寫才恰當(dāng)呢?以下我給大家整理了一些優(yōu)質(zhì)的心
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面我給大家整理了一些優(yōu)秀范文
心得體會是一種對自身價(jià)值觀、態(tài)度和觀念的反思和確認(rèn)。寫心得體會要注重自身觀點(diǎn)和思考,不要過多地依賴他人的意見。寫心得體會不僅可以記錄和總結(jié)自己的經(jīng)驗(yàn)和感悟,還可
我們在一些事情上受到啟發(fā)后,可以通過寫心得體會的方式將其記錄下來,它可以幫助我們了解自己的這段時(shí)間的學(xué)習(xí)、工作生活狀態(tài)。心得體會對于我們是非常有幫助的,可是應(yīng)該
一個(gè)好的計(jì)劃需要考慮到時(shí)間、資源、目標(biāo)等因素,以確保順利實(shí)施。在編寫計(jì)劃時(shí),可以用一些圖表或表格來清晰地展示計(jì)劃的內(nèi)容和步驟。在制定計(jì)劃時(shí),我們可以向身邊的成功
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下
學(xué)習(xí)中的快樂,產(chǎn)生于對學(xué)習(xí)內(nèi)容的興趣和深入。世上所有的人都是喜歡學(xué)習(xí)的,只是學(xué)習(xí)的方法和內(nèi)容不同而已。那么我們寫心得體會要注意的內(nèi)容有什么呢?那么下面我就給大家
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給
總結(jié)是成為更好的自己的必經(jīng)之路。總結(jié)的內(nèi)容要具有可行性和實(shí)用性,需要提出切實(shí)可行的建議和措施。通過閱讀總結(jié)范文,我們可以學(xué)習(xí)到一些寫作技巧和表達(dá)方法,提升自己的
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。相信許多人會覺得范文很難寫?下面是小編幫大家
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的優(yōu)
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們
計(jì)劃是提高工作與學(xué)習(xí)效率的一個(gè)前提。做好一個(gè)完整的工作計(jì)劃,才能使工作與學(xué)習(xí)更加有效的快速的完成。我們該怎么擬定計(jì)劃呢?這里給大家分享一些最新的計(jì)劃書范文,方便
總結(jié)是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達(dá)不到總結(jié)的目的。什么樣的總結(jié)才是有效的呢?下面是小編帶來的優(yōu)秀總結(jié)范文,希望大家能夠
通過總結(jié),我們可以抓住問題的關(guān)鍵,為今后的發(fā)展提供新的思路和方向。那么,怎樣才能寫出一篇較為完美的心得體會呢?首先,要結(jié)合自己的實(shí)際情況,將自己在學(xué)習(xí)、工作、生
在當(dāng)下社會,接觸并使用報(bào)告的人越來越多,不同的報(bào)告內(nèi)容同樣也是不同的。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的報(bào)告嗎?下面是我給大家整理的報(bào)告范文,歡迎大家閱讀分享
時(shí)間就如同白駒過隙般的流逝,我們的工作與生活又進(jìn)入新的階段,為了今后更好的發(fā)展,寫一份計(jì)劃,為接下來的學(xué)習(xí)做準(zhǔn)備吧!計(jì)劃書寫有哪些要求呢?我們怎樣才能寫好一篇計(jì)
總結(jié)是一種反思的過程,可以幫助我們更好地理解和記憶所學(xué)知識,提高學(xué)習(xí)效果。寫總結(jié)時(shí),要注意避免重復(fù)和啰嗦,突出重點(diǎn)。以下是一些總結(jié)范文,不同的寫作風(fēng)格和結(jié)構(gòu),希
體會是指將學(xué)習(xí)的東西運(yùn)用到實(shí)踐中去,通過實(shí)踐反思學(xué)習(xí)內(nèi)容并記錄下來的文字,近似于經(jīng)驗(yàn)總結(jié)。那么你知道心得體會如何寫嗎?以下是我?guī)痛蠹艺淼淖钚滦牡皿w會范文大全,
體會是指將學(xué)習(xí)的東西運(yùn)用到實(shí)踐中去,通過實(shí)踐反思學(xué)習(xí)內(nèi)容并記錄下來的文字,近似于經(jīng)驗(yàn)總結(jié)。好的心得體會對于我們的幫助很大,所以我們要好好寫一篇心得體會以下是小編
通過撰寫心得體會,我們可以更好地理解和掌握所學(xué)知識。怎樣寫一篇較為完美的心得體會呢?這是我們一起探討的話題。小編為大家整理了一些有關(guān)心得體會的文字材料,希望可以
當(dāng)我們備受啟迪時(shí),常常可以將它們寫成一篇心得體會,如此就可以提升我們寫作能力了。我們想要好好寫一篇心得體會,可是卻無從下手嗎?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會覺得范文很難寫?接下來小編就給大家介紹一下
當(dāng)工作或?qū)W習(xí)進(jìn)行到一定階段或告一段落時(shí),需要回過頭來對所做的工作認(rèn)真地分析研究一下,肯定成績,找出問題,歸納出經(jīng)驗(yàn)教訓(xùn),提高認(rèn)識,明確方向,以便進(jìn)一步做好工作,
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下
無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?這里我整理了一些優(yōu)秀的范
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面我給大
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。工作紀(jì)律發(fā)言
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面
在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來
我們在一些事情上受到啟發(fā)后,應(yīng)該馬上記錄下來,寫一篇心得體會,這樣我們可以養(yǎng)成良好的總結(jié)方法。我們想要好好寫一篇心得體會,可是卻無從下手嗎?接下來我就給大家介紹
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?以下是我為大家
總結(jié)可以提高我們對事物的洞察力和思考能力,讓我們更好地認(rèn)識自己??偨Y(jié)應(yīng)該集中在我們的成長和進(jìn)步上,不要過于苛求完美。在這篇總結(jié)范文中,作者通過具體實(shí)例的描述,讓
每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?以下
人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們該如何寫一篇較為完美的范文呢?下面是
工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過總結(jié)對工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識,以指導(dǎo)今后工作和實(shí)踐
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信許多人會覺得范文很難寫?以下是小編為大家收集的優(yōu)
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以
范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?這
在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以
心得體會是我們對所學(xué)所做的一個(gè)回顧和總結(jié),可以讓我們更加清晰地認(rèn)識自己的成長和進(jìn)步。寫心得體會時(shí),要有激發(fā)讀者興趣和引起共鳴的技巧,讓讀者產(chǎn)生共情的效果。以下是
通過總結(jié),我們可以更好地總結(jié)經(jīng)驗(yàn),提高工作和學(xué)習(xí)效率。在總結(jié)中,我們要突出重點(diǎn),對重要的內(nèi)容進(jìn)行重點(diǎn)強(qiáng)調(diào)和歸納。以下是小編為大家準(zhǔn)備的一些總結(jié)范文,其中包括了不
在現(xiàn)在社會,報(bào)告的用途越來越大,要注意報(bào)告在寫作時(shí)具有一定的格式。優(yōu)秀的報(bào)告都具備一些什么特點(diǎn)呢?又該怎么寫呢?下面是小編給大家?guī)淼膱?bào)告的范文模板,希望能夠幫
我們在一些事情上受到啟發(fā)后,應(yīng)該馬上記錄下來,寫一篇心得體會,這樣我們可以養(yǎng)成良好的總結(jié)方法。我們?nèi)绾尾拍軐懙靡黄獌?yōu)質(zhì)的心得體會呢?以下我給大家整理了一些優(yōu)質(zhì)的
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):2.99元 10元
微信掃碼支付
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):6.66元 10元
微信掃碼支付
聯(lián)系客服