范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
初一上下學(xué)期數(shù)學(xué)知識點篇一
由數(shù)或字母的積組成的式子叫做單項式。
說明:單獨的一個數(shù)或者單獨的一個字母也是單項式.
單項式中的數(shù)字因數(shù)叫這個單項式的系數(shù).
說明:
系數(shù)是1;4.8a的系數(shù)是4.8; 3
4xy2的系數(shù)是4;2x2y的系數(shù)是4;
系數(shù)是-1;ab的系數(shù)是1;
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).
說明:
而不是7次,應(yīng)注意字母z的指數(shù)是1而不是0;
⑵單項式的指數(shù)只和字母的指數(shù)有關(guān),與系數(shù)的指數(shù)無關(guān)。
初一上下學(xué)期數(shù)學(xué)知識點篇二
為了幫助大家在考試前,鞏固知識點,對所學(xué)的知識更好的掌握,數(shù)學(xué)網(wǎng)為大家編輯了人教版數(shù)學(xué)期中考試知識點匯總(3),希望對大家有用。
1、含有未知數(shù)的等式叫方程,使方程左右兩邊的值相等的未知數(shù)的值叫方程的解。
2、方程含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為 ( 為常數(shù),并且 )。使二元一次方程的左右兩邊的值相等的未知數(shù)的'值叫二元一次方程的解,一個二元一次方程一般有無數(shù)組解。
3、方程組含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。
4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數(shù)的式子表示另一個未知數(shù),如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程變形,用含一個未知數(shù)的式子表示另一個未知數(shù);再將表示出的未知數(shù)代入另一個方程中,從而消去一個未知數(shù),求出另一個未知數(shù)的值,將求得的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值。
5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使同一個未知數(shù)的系數(shù)相等或互為相反數(shù);(2)把兩個方程的兩邊分別相加或相減,消去一個未知數(shù);(3)解這個一元一次方程,求出一個未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個方程,求出另外一個未知數(shù)的值,從而得到原方程組的解。
6、解三元一次方程組的一般步驟:①觀察方程組中未知數(shù)的系數(shù)特點,確定先消去哪個未知數(shù);②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消去同一個未知數(shù),得到一個關(guān)于另外兩個未知數(shù)的二元一次方程組;③解這個二元一次方程組,求得兩個未知數(shù)的值;④將這兩個未知數(shù)的值代入原方程組中較簡單的一個方程中,求出第三個未知數(shù)的值,從而得到原三元一次方程組的解。
初一上下學(xué)期數(shù)學(xué)知識點篇三
整式的運算是初一下學(xué)期學(xué)習(xí)的第一章內(nèi)容,主要講解了整式的概念、同底數(shù)冪的乘法、同底數(shù)冪的除法、整式的乘除法、平方差公式、完全平方公式等。以下是小編整理的關(guān)于初一數(shù)學(xué)下學(xué)期整式的運算知識點,希望大家認(rèn)真閱讀!
單項式和多項式統(tǒng)稱整式。
a)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。
b)單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。
c)一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)(注意:常數(shù)項的單項式次數(shù)為0)
b)括號前面是“-”號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘。
b) 指數(shù)是1時,不要誤以為沒有指數(shù);
e)公式還可以逆用:(m、n均為整數(shù))
a)冪的乘方法則:(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。b)(m,n都為整數(shù))
d)底數(shù)有時形式不同,但可以化成相同。
e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f) 積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數(shù))。
g) 冪的乘方與積乘方法則均可逆向運用。
b)在應(yīng)用時需要注意以下幾點:
1) 法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。
2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。
c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a0時,a-p的值一定是正的,當(dāng)a0時,a-p的值可能是正也可能是負(fù)的,如, d)運算要注意運算順序。
單項式相乘,它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
b)相同字母相乘,運用同底數(shù)冪的乘法法則;
c)只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
d)單項式乘法法則對于三個以上的單項式相乘同樣適用;
e)單項式乘以單項式,結(jié)果仍是一個單項式。
a)單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;
b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;
c) 在混合運算時,要注意運算順序。
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
b)多項式相乘的結(jié)果應(yīng)注意合并同類項;
c)對含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到。
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。
其結(jié)構(gòu)特征是:
b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項式的完全平方;
b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn)這樣的錯誤。
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉(zhuǎn)化成單項式除以單項式,所得商的項數(shù)與原多項式的項數(shù)相同,另外還要特別注意符號。