總結(jié)可以促進(jìn)團(tuán)隊(duì)成員之間的交流和協(xié)作,提高團(tuán)隊(duì)的工作效率。要寫一篇好的總結(jié),首先要對所總結(jié)的內(nèi)容有全面而準(zhǔn)確的了解??偨Y(jié)是一個(gè)總結(jié)錯失的機(jī)會、總結(jié)倒霉的經(jīng)歷、總結(jié)失敗的原因的過程。
中考數(shù)學(xué)知識點(diǎn)歸納篇一
(1)求相同因數(shù)的積的運(yùn)算叫做乘方.乘方運(yùn)算的結(jié)果叫冪。
一般地,記作,讀作:a的n次方,表示n個(gè)a相乘;其中,a是底數(shù),n是指數(shù),稱為冪。
(2)正數(shù)的任何次冪都是正數(shù).
負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),
負(fù)數(shù)的偶數(shù)次冪是正數(shù)。
(3)一個(gè)數(shù)的平方為它本身,這個(gè)數(shù)是0和1;
一個(gè)數(shù)的立方為它本身,這個(gè)數(shù)是0、1和-1。
中考數(shù)學(xué)知識點(diǎn)歸納篇二
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。
第二:平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四:空間向量和立體幾何。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
第五:概率和統(tǒng)計(jì)。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一等可能的概率,第二事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類我們所講的動點(diǎn)問題,第三類是弦長問題,第四類是對稱問題,這也是20__年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
1.立足學(xué)科基礎(chǔ),強(qiáng)調(diào)能力立意。
命題以中學(xué)數(shù)學(xué)基礎(chǔ)知識為載體,堅(jiān)持能力立意,全面考查了空間想象能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識和創(chuàng)新意識。如理15、文16以集合語言、常用邏輯用語為載體,強(qiáng)調(diào)正確推理的形式和規(guī)則,突出考查抽象概括能力和推理論證能力;理17涉及的圖形翻折及文19的“割補(bǔ)”或“等積變換”需要考生分析圖形中基本元素及其相互關(guān)系,突出考查空間想象能力;理19的解答,考生可從特殊入手,通過合情推理得出結(jié)論并加以驗(yàn)證,也可通過演繹推理直接證明,突出考查推理論證能力;文12以橢圓的定義為載體,探究在新情境下“橢圓”生成的基本步驟和圖形特征,重現(xiàn)“軌跡”的基本研究方法,突出考查抽象概括能力;理10以計(jì)數(shù)原理為載體,需要考生從題干及備選項(xiàng)中領(lǐng)悟?qū)ⅰ斑x球方式”抽象為“顏色模式”,考查抽象概括能力與學(xué)習(xí)潛能。
2.關(guān)注數(shù)學(xué)本質(zhì),突出教育價(jià)值。
命題立足數(shù)學(xué)本質(zhì),從數(shù)學(xué)各分支的核心內(nèi)容、學(xué)科思想以及相關(guān)分支的教育價(jià)值入手設(shè)置試題,合理地檢測學(xué)生的基本數(shù)學(xué)素養(yǎng)。如統(tǒng)計(jì)與概率突出考查對統(tǒng)計(jì)量的理解與應(yīng)用以及運(yùn)用樣本估計(jì)總體的思想,要求考生不僅會計(jì)算統(tǒng)計(jì)量而且會合理地根據(jù)統(tǒng)計(jì)量對問題作出分析與解釋;函數(shù)與導(dǎo)數(shù)的考查突出導(dǎo)數(shù)的工具作用,考查考生在解題過程中對“常量”與“變量”辯證關(guān)系的理解以及綜合運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的能力;解析幾何突出“解析法”,要求考生將幾何問題代數(shù)化,并合理地運(yùn)用代數(shù)手段解決幾何問題,體現(xiàn)解析幾何的基本思想;立體幾何突出對空間想象能力與推理論證能力的考查;三角突出三角變換及三角函數(shù)的圖象與性質(zhì)的研究;數(shù)列關(guān)注等差數(shù)列、等比數(shù)列的基本性質(zhì)與運(yùn)算,突出“基本量法”。
3.堅(jiān)持課標(biāo)理念,凸顯導(dǎo)向功能。
命題緊扣課標(biāo)理念,充分發(fā)揮對中學(xué)數(shù)學(xué)教學(xué)的正確導(dǎo)向作用。其一,引導(dǎo)中學(xué)數(shù)學(xué)教學(xué)全面落實(shí)課程標(biāo)準(zhǔn),不隨意忽視所謂的“冷門知識”,如理19、理14等。其二,引導(dǎo)中學(xué)數(shù)學(xué)教學(xué)回歸教材,克服脫離教材的“題海戰(zhàn)術(shù)”,如理8、文18等取材于教材習(xí)題的合理改造。其三,引導(dǎo)中學(xué)數(shù)學(xué)教學(xué)關(guān)注通性通法,淡化特殊技巧,每道試題的解題思路都是在數(shù)學(xué)思想方法的統(tǒng)領(lǐng)下自然形成的,試題的設(shè)計(jì)追求“新而不難,難而不怪”。其四,引導(dǎo)中學(xué)數(shù)學(xué)教學(xué)既關(guān)注“結(jié)果性知識”,也關(guān)注“過程性知識”,使學(xué)生既知其然,又知其所以然,如理10、理18等。其五,引導(dǎo)中學(xué)數(shù)學(xué)教學(xué)基于已有知識與方法的創(chuàng)造性運(yùn)用而關(guān)注創(chuàng)新意識的培養(yǎng),如理10以多項(xiàng)式展開式為背景,考查考生創(chuàng)造性地解決新情境下的數(shù)學(xué)問題;文12依托新情境材料,考查考生閱讀理解、提取相關(guān)信息解決問題的能力。
中考數(shù)學(xué)知識點(diǎn)歸納篇三
例:已知,正四面體中,一枚棋子從一個(gè)頂點(diǎn)出發(fā),選任何一條棱移動的概率都相等,每次移動前,擲一次骰子,出現(xiàn)偶數(shù)點(diǎn),則棋子原地不動;若出現(xiàn)奇數(shù)點(diǎn),則移動。 一枚棋子從點(diǎn)開始移動到點(diǎn),求擲次骰子,才到達(dá)點(diǎn)的概率。
點(diǎn)撥:此題位置不確定,擲點(diǎn)奇偶不定,關(guān)系復(fù)雜,利用遞推思想是最有郊的方法,通過構(gòu)建遞推數(shù)列,問題迎刃而解。一般存在相互依存關(guān)系問題的概率都可運(yùn)用遞推思路去解決。
綜上所述,靈活運(yùn)用遞推思維,構(gòu)造遞推數(shù)列解決某些問題,可以起到化繁為簡、化抽象為具體的奇效。 其運(yùn)用過程中,融高度的邏輯性于一體,是數(shù)學(xué)中化歸思想的深度體現(xiàn),因此在平時(shí)高考復(fù)習(xí)中,應(yīng)引起我們足夠的重視。
二、數(shù)列遞推思想在計(jì)數(shù)方面的應(yīng)用
點(diǎn)撥:在一些復(fù)雜的計(jì)數(shù)問題中,運(yùn)用數(shù)列遞推思維組建遞推關(guān)系可起到“皰丁解?!钡淖饔?,使問題清晰而明了。需要說明的是,此題涉及到計(jì)數(shù)中的染色問題,通過遞歸關(guān)系得到一個(gè)一般化的'通式,此式在染色問題中應(yīng)用相當(dāng)廣泛。
三、數(shù)列在歸納推理中應(yīng)用
例:一白珠下面掛一黑珠,每一黑珠下掛一黑珠與一白珠,則第11行黑珠的個(gè)數(shù)為________。
[…第一行][…第二行][…第三行][…第四行][…第五行][…第六行]
點(diǎn)撥:此題通過運(yùn)用遞推思想得到一個(gè)遞推關(guān)系,正是著名的“斐波拉契數(shù)列”。 在一些數(shù)列歸納通項(xiàng)的推理中,利用遞推思想,構(gòu)建遞推公式,使有限拓展到無限,由特殊變成一般規(guī)律,這是解決此類問題常見思路與方法,同理這也體現(xiàn)了合理推理的精髓所在。
中考數(shù)學(xué)知識點(diǎn)歸納篇四
一、制定切實(shí)可行的計(jì)劃,家長與孩子一起討論,合理的羅列出完成某些要事的時(shí)間段及要達(dá)到的目標(biāo)。
二、數(shù)學(xué)學(xué)習(xí)過程中,要有一個(gè)清醒的復(fù)習(xí)意識,逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)是一個(gè)反思性學(xué)習(xí)過程。要反思對所學(xué)習(xí)的知識、技能有沒有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過程中有什么特點(diǎn);要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時(shí)碰到的問題中有哪些問題可歸結(jié)為基本問題;要反思錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。
三、數(shù)學(xué)不等于做題,千萬不要忽視最基本的概念、公理、定理和公式,寒假里要把已經(jīng)學(xué)過的教科書中的概念整理出來,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
其次,數(shù)學(xué)需要實(shí)踐,需要大量做題,但要“埋下頭去做題,抬起頭來想題”,在做題中關(guān)注思路、方法、技巧,注重發(fā)現(xiàn)題與題之間的內(nèi)在聯(lián)系,要“苦做”更要“巧做”,絕不能“傻做”。在做一道與以前相似的題目時(shí),要會通過比較,發(fā)現(xiàn)規(guī)律,穿透實(shí)質(zhì),以達(dá)到“觸類旁通”的境界。此外,大家在平時(shí)做題中就要及時(shí)記錄錯題,還要想一想為什么會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。如果試題中涉及到你的薄弱環(huán)節(jié),一定要通過短時(shí)間的專題學(xué)習(xí),集中優(yōu)勢兵力,攻克難關(guān),別留下陷阱。
中考數(shù)學(xué)知識點(diǎn)歸納篇五
全面復(fù)習(xí)基礎(chǔ)知識,加強(qiáng)基本技能訓(xùn)練的第一階段的復(fù)習(xí)工作我們已經(jīng)結(jié)束了,在第二階段的復(fù)習(xí)中,反思和總結(jié)上一輪復(fù)習(xí)中的遺漏和缺憾,會發(fā)現(xiàn)有些知識還沒掌握好,解題時(shí)還沒有思路,因此要做到邊復(fù)習(xí)邊將知識進(jìn)一步歸類,加深記憶;還要進(jìn)一步理解概念的內(nèi)涵和外延,牢固掌握法則、公式、定理的推導(dǎo)或證明,進(jìn)一步加強(qiáng)解題的思路和方法;同時(shí)還要查找一些類似的題型進(jìn)行強(qiáng)化訓(xùn)練,要及時(shí)有目的有針對性的補(bǔ)缺補(bǔ)漏,直到自己真正理解會做為止,決不要輕易地放棄。
這個(gè)階段尤其要以課本為主進(jìn)行復(fù)習(xí),因?yàn)檎n本的例題和習(xí)題是教材的重要組成部分,是數(shù)學(xué)知識的主要載體。吃透課本上的例題、習(xí)題,才能有利于全面、系統(tǒng)地掌握數(shù)學(xué)基礎(chǔ)知識,熟練數(shù)學(xué)基本方法,以不變應(yīng)萬變。所以在復(fù)習(xí)時(shí),我們要學(xué)會多方位、多角度審視這些例題習(xí)題,從中進(jìn)一步清晰地掌握基礎(chǔ)知識,重溫思維過程,鞏固各類解法,感悟數(shù)學(xué)思想方法。復(fù)習(xí)形式是多樣的,尤其要提高復(fù)習(xí)效率。
另外,現(xiàn)在中考命題仍然以基礎(chǔ)題為主,有些基礎(chǔ)題是課本上的原題或改造了的題,有的大題雖是“高于教材”,但原型一般還是教材中的例題或習(xí)題,是課本中題目的引申、變形或組合,課本中的例題、練習(xí)和作業(yè)題不僅要理解,而且一定還要會做。同時(shí),對課本上的《閱讀材料》《課題研究》《做一做》《想一想》等內(nèi)容,我們也一定要引起重視。
注重課堂學(xué)習(xí)。
在任課老師的指導(dǎo)下,通過課堂教學(xué),要求同學(xué)們掌握各知識點(diǎn)之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認(rèn)識,通過對基礎(chǔ)知識的系統(tǒng)歸納,解題方法的歸類,在形成知識結(jié)構(gòu)的基礎(chǔ)上加深記憶,至少應(yīng)達(dá)到使自己準(zhǔn)確掌握每個(gè)概念的含義,把平時(shí)學(xué)習(xí)中的模糊概念搞清楚,使知識掌握的更扎實(shí)的目的,要達(dá)到使自己明確每一個(gè)知識點(diǎn)在整個(gè)初中數(shù)學(xué)中的地位、聯(lián)系和應(yīng)用的目的。上課要會聽課,會記錄,必須要把握每一節(jié)課所講的知識重點(diǎn),抓住關(guān)鍵,解決疑難,提高學(xué)習(xí)效率,根據(jù)個(gè)人的具體情況,課堂上及時(shí)查漏補(bǔ)缺。
夯實(shí)基礎(chǔ)知識。
在歷年的數(shù)學(xué)中考試題中,基礎(chǔ)分值占的最多,再加上部分中檔題及較難題中的基礎(chǔ)分值,因此所占分值的比例就更大。我們必須扎扎實(shí)實(shí)地夯實(shí)基礎(chǔ),通過系統(tǒng)的復(fù)習(xí),我們對初中數(shù)學(xué)知識達(dá)到“理解”和“掌握”的要求,在應(yīng)用基礎(chǔ)知識時(shí)能做到熟練、正確和迅速。
有的考題會對需要考查的知識和方法創(chuàng)設(shè)一個(gè)新的問題情境,特別是一些需要有較高區(qū)分度的試題更是如此;每個(gè)中檔以上難度的數(shù)學(xué)試題通常要涉及多個(gè)知識點(diǎn)、多種數(shù)學(xué)思想方法,或者在知識交匯點(diǎn)上巧妙設(shè)計(jì)試題。因此,我們每一個(gè)同學(xué)要學(xué)會思考,老師上課教給我們的是思考問題的角度、方法和策略,我們要用學(xué)到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進(jìn)行正確的思考。
注意知識的遷移。
課本中的某些例題、習(xí)題,并不是孤立的,而是前后聯(lián)系、密切相關(guān)的,其他學(xué)科的知識也和數(shù)學(xué)有著千絲萬縷的聯(lián)系,我們要學(xué)會從思維發(fā)展的最近點(diǎn)出發(fā),去發(fā)現(xiàn)、研究和展示這些知識的內(nèi)在聯(lián)系,這樣做不僅有助于自己深刻理解課本知識,有利于強(qiáng)化知識重點(diǎn),更重要的是能有效地促進(jìn)自己數(shù)學(xué)知識網(wǎng)絡(luò)和方法體系的構(gòu)建,使知識和能力產(chǎn)生良性遷移,達(dá)到觸類旁通的效果,通過探究課本典型例題、習(xí)題的內(nèi)在聯(lián)系,讓我們在深刻理解課本知識的同時(shí),更有效地形成知識網(wǎng)絡(luò)與方法體系。例如一元二次方程的根的判別式,不但可以解決根的判定和已知根的情況求字母系數(shù),還可以解決二次三項(xiàng)式的因式分解、方程組的根的判定及二次函數(shù)圖象與橫軸的交點(diǎn)坐標(biāo)。
中考數(shù)學(xué)知識點(diǎn)歸納篇六
高考數(shù)學(xué)知識點(diǎn):動點(diǎn)的軌跡方程動點(diǎn)的軌跡方程:
在直角坐標(biāo)系中,動點(diǎn)所經(jīng)過的軌跡用一個(gè)二元方程f(x,y)=0表示出來。
求動點(diǎn)的軌跡方程的基本方法:
直接法、定義法、相關(guān)點(diǎn)法、參數(shù)法、交軌法等。
用直接法求動點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡,證明五個(gè)步驟,最后的證明可以省略,但要注意“挖”與“補(bǔ)”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。
動點(diǎn)所滿足的條件不易表述或求出,但形成軌跡的動點(diǎn)p(x,y)卻隨另一動點(diǎn)q(x′,y′)的運(yùn)動而有規(guī)律的運(yùn)動,且動點(diǎn)q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入q的軌跡方程,然而整理得p的軌跡方程,代入法也稱相關(guān)點(diǎn)法。一般地:定比分點(diǎn)問題,對稱問題或能轉(zhuǎn)化為這兩類的軌跡問題,都可用相關(guān)點(diǎn)法。
求軌跡方程有時(shí)很難直接找到動點(diǎn)的橫坐標(biāo)、縱坐標(biāo)之間的關(guān)系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再從所求式子中消去參數(shù),得出動點(diǎn)的軌跡方程。用什么變量為參數(shù),要看動點(diǎn)隨什么量的變化而變化,常見的參數(shù)有:斜率、截距、定比、角、點(diǎn)的坐標(biāo)等。要特別注意消參前后保持范圍的等價(jià)性。多參問題中,根據(jù)方程的觀點(diǎn),引入n個(gè)參數(shù),需建立n+1個(gè)方程,才能消參(特殊情況下,能整體處理時(shí),方程個(gè)數(shù)可減少)。
求兩動曲線交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),例如求兩動直線的交點(diǎn)時(shí)常用此法,也可以引入?yún)?shù)來建立這些動曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程??梢哉f是參數(shù)法的一種變種。用交軌法求交點(diǎn)的軌跡方程時(shí),不一定非要求出交點(diǎn)坐標(biāo),只要能消去參數(shù),得到交點(diǎn)的兩個(gè)坐標(biāo)間的關(guān)系即可。交軌法實(shí)際上是參數(shù)法中的一種特殊情況。
(l)建系,設(shè)點(diǎn)建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)曲線上任意一點(diǎn)的坐標(biāo)為m(x,y);
(2)寫集合寫出符合條件p的點(diǎn)m的集合p(m);
(3)列式用坐標(biāo)表示p(m),列出方程f(x,y)=0;
(4)化簡化方程f(x,y)=0為最簡形式;
(5)證明證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn),
中考數(shù)學(xué)知識點(diǎn)歸納篇七
【知識點(diǎn)】:
1、為學(xué)生創(chuàng)設(shè)具體的數(shù)學(xué)情境,通過描一描樹葉的邊線,摸一摸課桌數(shù)學(xué)書的邊線,再量一量自己的腰圍和頭圍,從而知道了一個(gè)圖形一周的長度就是這個(gè)圖形的周長。
2、學(xué)生在動手操作中,可以畫出并能計(jì)算出圖形的周長。
【知識點(diǎn)】:
1、為學(xué)生創(chuàng)設(shè)游園的情境,引導(dǎo)學(xué)生體驗(yàn)用不同的方法去計(jì)算小公園的周長。就是把圍成小公園的所有線段加在一起。
2、算一算中出現(xiàn)了4種不同的圖形,鼓勵學(xué)生用多種方法計(jì)算,為后面學(xué)習(xí)長方形、正方形周長的計(jì)算作好鋪墊。
【知識點(diǎn)】:
1、學(xué)生要明確已知的條件和問題,然后先獨(dú)立思考,再在小組中交流自己的想法,鼓勵學(xué)生用不同的方法來解決問題,從而發(fā)現(xiàn)(長+寬)﹡2是求長方形周長最簡便的方法。不必用公式化的算式去約束學(xué)生,他們可以自己喜歡的方法去計(jì)算。
2、在做一做中出現(xiàn)的兩個(gè)不同的長方形可以讓學(xué)生用自己喜歡的方法求周長。
【知識點(diǎn)】:
1、學(xué)生要明確已知條件和問題,利用學(xué)習(xí)長方形周長的知識經(jīng)驗(yàn),知識遷移到怎樣求出正方形的周長,就是把正方形的四條邊長加起來,還可以用邊長乘4。
2、做一做中出現(xiàn)的兩個(gè)正方形周長的計(jì)算,可以放手讓學(xué)生用自己喜歡的方法去解決。
3、練一練中的第2小題要讓學(xué)生明確求籬笆長多少米,就是在求正方形實(shí)驗(yàn)園地的周長。
【知識點(diǎn)】:
1、練習(xí)六中的1——8小題通過計(jì)算各種圖形的不同周長,進(jìn)一步鞏固學(xué)生已經(jīng)掌握的計(jì)算周長的方法。
而第9小題則是讓學(xué)生發(fā)現(xiàn)圖形之間的變化關(guān)系,從而發(fā)現(xiàn)這四幅圖形的周長是相等的。
2、在實(shí)踐活動中,可以讓學(xué)生先計(jì)算三個(gè)周長的大小,并說出估計(jì)的過程或理由,然后再讓學(xué)生自主選擇測量工具和測量方式??梢元?dú)立測量,也可以是小組合作進(jìn)行,最后組織學(xué)生對其估計(jì)和測量的結(jié)果進(jìn)行對比,修正自己的估計(jì)和測量的結(jié)果。
【知識點(diǎn)】:
在這節(jié)實(shí)踐活動課中,要引導(dǎo)學(xué)生認(rèn)真仔細(xì)的觀察圖片中的數(shù)學(xué)信息,從而運(yùn)用周長、乘除法、搭配方法等數(shù)學(xué)知識和方法來解決實(shí)際生活中的簡單問題。
中考數(shù)學(xué)知識點(diǎn)歸納篇八
4、多元函數(shù)積分學(xué),二重極限的討論計(jì)算難度較大,??疾樽C明極限不存在。
(一)重要題型及點(diǎn)撥
1、求數(shù)列極限
求數(shù)列極限可以歸納為以下三種形式。
2、抽象數(shù)列求極限
這類題一般以選擇題的形式出現(xiàn), 因此可以通過舉反例來排除。 此外,也可以按照定義、基本性質(zhì)及運(yùn)算法則直接驗(yàn)證。
(二)求具體數(shù)列的極限,可以參考以下幾種方法:
a、利用單調(diào)有界必收斂準(zhǔn)則求數(shù)列極限。
首先,用數(shù)學(xué)歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進(jìn)而確定極限存在性;其次,通過遞推關(guān)系中取極限,解方程, 從而得到數(shù)列的極限值。
b、利用函數(shù)極限求數(shù)列極限
如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關(guān)系轉(zhuǎn)化為求函數(shù)極限,此時(shí)再用洛必達(dá)法則求解。
a、利用特殊級數(shù)求和法
如果所求的項(xiàng)和式極限中通項(xiàng)可以通過錯位相消或可以轉(zhuǎn)化為極限已知的一些形式,那么通過整理可以直接得出極限結(jié)果。
b、利用冪級數(shù)求和法
若可以找到這個(gè)級數(shù)所對應(yīng)的冪級數(shù),則可以利用冪級數(shù)函數(shù)的方法把它所對應(yīng)的和函數(shù)求出,再根據(jù)這個(gè)極限的形式代入相應(yīng)的變量求出函數(shù)值。
c、利用定積分定義求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)可用一個(gè)通項(xiàng)表示, 則可以考慮用定積分定義求解數(shù)列極限。
d、利用夾逼定理求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)不能用一個(gè)通項(xiàng)表示,但是其余項(xiàng)是按遞增或遞減排列的,則可以考慮用夾逼定理求解。
e、求項(xiàng)數(shù)列的積的極限
一般先取對數(shù)化為項(xiàng)和的形式,然后利用求解項(xiàng)和數(shù)列極限的方法進(jìn)行計(jì)算。
中考數(shù)學(xué)知識點(diǎn)歸納篇九
1、按定義分類: 2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負(fù)數(shù).
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.
(3)互為相反數(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù) a+b=0.
2.絕對值 |a|0.
3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個(gè)數(shù)互為倒數(shù),a、b互為倒數(shù)。
4.平方根
(1)如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根。一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a0)的平方根記作。
(2)一個(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根,a(a0)的算術(shù)平方根記作。
5.立方根
數(shù)軸定義: 規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可;
1.對于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大;
3.無理數(shù)的比較大小:
1.加法
2.減法:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù);
3.乘法
幾個(gè)非零實(shí)數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù).幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0,積就為0。
4.除法
除以一個(gè)數(shù),等于乘上這個(gè)數(shù)的倒數(shù).兩個(gè)數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個(gè)不等于0的數(shù)都得0。
5.乘方與開方
(1)an所表示的意義是n個(gè)a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。
(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方。
(3)零指數(shù)與負(fù)指數(shù)
1.有效數(shù)字:
一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個(gè)近似數(shù)的有效數(shù)字.
2.科學(xué)記數(shù)法:
把一個(gè)數(shù)用 (110,n為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.
有了上文梳理的人教版數(shù)學(xué)期中考試知識點(diǎn)匯總(2),相信大家對考試充滿了信心,同時(shí)預(yù)祝大家考試取得好成績。
中考數(shù)學(xué)知識點(diǎn)歸納篇十
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識和指數(shù)函數(shù)、對數(shù)函數(shù)和不等式的知識綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
知識整合。
進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3.培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動探索的精神和科學(xué)理性的思維方法。
高考數(shù)學(xué)解答題部分主要考查七大主干知識:
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對數(shù)學(xué)高考強(qiáng)調(diào)對基礎(chǔ)知識與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。
對數(shù)學(xué)思想和方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時(shí)與數(shù)學(xué)知識相結(jié)合。
對數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上。
考綱對數(shù)學(xué)思維能力、運(yùn)算能力、空間想象能力以及實(shí)踐能力和創(chuàng)新意識都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實(shí)處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識,多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的認(rèn)識,真正做到解一題,會一類。
在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個(gè)層面上整體把握,同步推進(jìn)。
1.知識層面。
也就是對每個(gè)章節(jié)、每個(gè)知識點(diǎn)的再認(rèn)識、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個(gè)章節(jié),75個(gè)知識點(diǎn)細(xì)化為160個(gè)小知識點(diǎn),而這些知識點(diǎn)又是縱橫交錯,互相關(guān)聯(lián),是“你中有我,我中有你”的??忌鷤冊谇謇磉@些知識點(diǎn)時(shí),首先是點(diǎn)點(diǎn)必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點(diǎn),連成一線,使之橫豎縱橫都逐個(gè)、逐級并網(wǎng)連遍,從而牢固記憶、靈活運(yùn)用。
2.能力層面。
從知識點(diǎn)的掌握到解題能力的形成,是綜合,更是飛躍,將知識點(diǎn)的內(nèi)容轉(zhuǎn)化為高強(qiáng)的數(shù)學(xué)能力,這要通過大量練習(xí),通過大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說的解題能力、計(jì)算能力、轉(zhuǎn)化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。
3.創(chuàng)新層面。
數(shù)學(xué)解題要創(chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線,我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問題到運(yùn)算問題、從高散型到連續(xù)型、從指數(shù)與對數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。
我們常常應(yīng)對參數(shù)的策略點(diǎn)是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問題化成函數(shù)問題,使問題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。
還有一類數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時(shí)出現(xiàn)山窮水盡,無計(jì)可施時(shí),用代換與構(gòu)造,就會使思路豁然開朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。
總之,數(shù)學(xué)是一門規(guī)律性強(qiáng)、邏輯結(jié)構(gòu)嚴(yán)密的學(xué)科,它有規(guī)律、有模型、有式子、有圖形,只要我們掌握了它的規(guī)律、看清了模型、了解了式子、記住了圖形,數(shù)學(xué)就會變成一門簡單而有趣的科學(xué)。這種戰(zhàn)略上的藐視與戰(zhàn)術(shù)上的重視,將會使考生們超常發(fā)揮,取得優(yōu)異的成績。
中考數(shù)學(xué)知識點(diǎn)歸納篇十一
3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)。
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。
這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分。
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題。
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空);
2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。
2、數(shù)列:高考必考,17---22分;
3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2。
選修1--1:重點(diǎn):高考占30分。
1、邏輯用語:一般不考,若考也是和集合放一塊考;
2、圓錐曲線;
3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)。
選修1--2:1、統(tǒng)計(jì);
2、推理證明:一般不考,若考會是填空題;
3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。
理科:選修2—1、2—2、2—3。
選修2--1:1、邏輯用語;2、圓錐曲線;3、空間向量:(利用空間向量可以把立體幾何做題簡便化)。
選修2--2:1、導(dǎo)數(shù)與微積分;
2、推理證明:一般不考3、復(fù)數(shù)。
2、隨機(jī)變量及其分布:不單獨(dú)命題;
3、統(tǒng)計(jì)。
中考數(shù)學(xué)知識點(diǎn)歸納篇十二
如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
平行定理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
中考數(shù)學(xué)知識點(diǎn)歸納篇十三
1.某工廠生產(chǎn)了一批零件共1600件,從中任意抽取了80件進(jìn)行檢查,其中合格產(chǎn)品78件,其余不合格,則可估計(jì)這批零件中有______件不合格.
2.下列調(diào)查工作需采用普查方式的是()
a.環(huán)保部門對淮河某段水域的水污染情況的調(diào)查
b.電視臺對正在播出的某電視節(jié)目收視率的調(diào)查
c.質(zhì)檢部門對各廠家生產(chǎn)的電池使用壽命的調(diào)查
d.企業(yè)在給職工做工作服前進(jìn)行的尺寸大小的調(diào)查
3.為了解某校九年級學(xué)生每天的睡眠時(shí)間情況,隨機(jī)調(diào)查了該校九年級20名學(xué)生,將所得數(shù)據(jù)整理并制成下表:
據(jù)此估計(jì)該校九年級學(xué)生每天的平均睡眠時(shí)間大約是______小時(shí).
4.一養(yǎng)魚專業(yè)戶從魚塘捕得同時(shí)放養(yǎng)的草魚100條,他從中任選5條,稱得它們的質(zhì)量如下(單位:kg):1.3,1.6,1.3,1.5,1.3.則這100條魚的總質(zhì)量約為______kg.
1.總體是指_________________________,個(gè)體是指_____________________,樣本是指________________________,樣本的個(gè)數(shù)叫做___________.
2.樣本方差與標(biāo)準(zhǔn)差是衡量______________的量,其值越大,______越大.
3.頻數(shù)是指________________________;頻率是___________________________.
4.得到頻數(shù)分布直方圖的步驟_________________________________________.
5.數(shù)據(jù)的統(tǒng)計(jì)方法有____________________________________________.
中考數(shù)學(xué)知識點(diǎn)歸納篇十四
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結(jié)一下自己的收獲。
二、主動復(fù)習(xí)與總結(jié)提高。
(1)要把課本,筆記,區(qū)單元測驗(yàn)試卷,校周末測驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過一會兒要摘錄的。要養(yǎng)成一個(gè)習(xí)慣,在讀材料時(shí)隨時(shí)做標(biāo)記,告訴自己下次再讀這份材料時(shí)的閱讀重點(diǎn)。長期保持這個(gè)習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。這樣積累起來的資料才有活力,才能用的上。
(2)把本章節(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識,一部分是典型問題。要把對技能的要求(對“鋸,斧,鑿子…”的使用總結(jié)),列進(jìn)這兩部分中的一部分,不要遺漏。
(3)在基礎(chǔ)知識的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會兩用。即:會代字表述,會圖象符號表述,會推導(dǎo)證明。同時(shí)能從正反兩方面對其進(jìn)行應(yīng)用。
(4)把重要的,典型的各種問題進(jìn)行編隊(duì)。(怎樣做“板凳,椅子,書架…”)要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場團(tuán)體操表演,我們不能只盯住一個(gè)人看,看他從哪跑到哪,都做了些什么動作。我們一定要居高臨下地看,看全場的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
(5)總結(jié)那些尚未歸類的問題,作為備注進(jìn)行補(bǔ)充說明。
(6)找一份適當(dāng)?shù)臏y驗(yàn)試卷。一定要計(jì)時(shí)測驗(yàn)。然后再對照答案,查漏補(bǔ)缺。
三、
重視改錯,錯不重犯。
一定要重視改錯工作,做到錯不再犯。高中數(shù)學(xué)課沒有那么多時(shí)間,除了少數(shù)幾種典型錯,其它錯誤,不能一一顧及。如果能及時(shí)改錯,那么錯誤就可能轉(zhuǎn)變?yōu)樨?cái)富,成為不再犯這種錯誤的預(yù)防針。但是,如果不能及時(shí)改錯,這個(gè)錯誤就將形成一處隱患,一處“地雷”,遲早要惹禍。有的學(xué)生認(rèn)為,自己考試成績上不去,是因?yàn)樽约鹤鲱}太粗心。而且,自己特愛粗心。打一個(gè)比方。比如說,學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程都可以講的清清楚楚。如果新司機(jī)真正掌握了這一套,請問,可以同意他開車上街嗎?恐怕他自己也知道自己還缺乏練習(xí)。一兩次能正確地完成任務(wù),并不能說明永遠(yuǎn)不出錯。
圖是初等數(shù)學(xué)的生命線,能不能用圖支撐思維活動是能否學(xué)好初等數(shù)學(xué)的關(guān)鍵。無論是幾何還是代數(shù),拿到題的第一件事都應(yīng)該是畫圖。有的時(shí)候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時(shí)就更應(yīng)該畫圖,圖可以清楚地呈現(xiàn)出已知條件。而且解難題時(shí)至少一問畫一個(gè)圖,這樣看起來清晰,做題的時(shí)候也好捋順?biāo)悸贰?/p>
中考數(shù)學(xué)知識點(diǎn)歸納篇十五
1.根據(jù)方向和距離可以確定物體在平面圖上的位置。
2.在平面圖上標(biāo)出物體位置的方法:
先用量角器確定方向,再以選定的單位長度為基準(zhǔn)用直尺確定圖上距離,最后找出物體的具體位置,并標(biāo)上名稱。
3.描述路線圖時(shí),要先按行走路線確定每一個(gè)參照點(diǎn),然后以每一個(gè)參照點(diǎn)建立方向標(biāo),描述到下一個(gè)目標(biāo)所行走的方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠(yuǎn)到哪兒。
4.繪制路線圖的方法:
(1)確定方向標(biāo)和單位長度。
(2)確定起點(diǎn)的位置。
(3)根據(jù)描述,從起點(diǎn)出發(fā),找好方向和距離,一段一段地畫。除第一段(以起點(diǎn)為參照點(diǎn))外,其余每一段都要以前一段的終點(diǎn)為參照點(diǎn)。
(4)以誰為參照點(diǎn),就以誰為中心畫出“十”字方向標(biāo),然后判斷下一地點(diǎn)的方向和距離。
中考數(shù)學(xué)知識點(diǎn)歸納篇十六
知識點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識點(diǎn)2:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。
知識點(diǎn)4:絕對值的概念:
(1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值,記作|a|;
(2)代數(shù)意義:一個(gè)正數(shù)的絕對值是它的本身;一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
注:任何一個(gè)數(shù)的絕對值均大于或等于0(即非負(fù)數(shù)).
知識點(diǎn)5:相反數(shù)的概念:
(2)代數(shù)意義:符號不同但絕對值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識點(diǎn)6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。
用絕對值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對值大的負(fù)數(shù)反而小。
知識點(diǎn)7:有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
知識點(diǎn)8:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
知識點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
知識點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號和加號,并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
中考數(shù)學(xué)知識點(diǎn)歸納篇十七
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成(0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)閞.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a1
圖象特征
函數(shù)性質(zhì)
向x、y軸正負(fù)方向無限延伸
函數(shù)的定義域?yàn)閞
圖象關(guān)于原點(diǎn)和y軸不對稱
非奇非偶函數(shù)
函數(shù)圖象都在x軸上方
函數(shù)的值域?yàn)閞+
函數(shù)圖象都過定點(diǎn)(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
在第一象限內(nèi)的圖象縱坐標(biāo)都大于1
在第一象限內(nèi)的圖象縱坐標(biāo)都小于1
在第二象限內(nèi)的圖象縱坐標(biāo)都小于1
在第二象限內(nèi)的圖象縱坐標(biāo)都大于1
圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數(shù)值開始增長較慢,到了某一值后增長速度極快;
函數(shù)值開始減小極快,到了某一值后減小速度較慢;
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);
(3)對于指數(shù)函數(shù),總有;
(4)當(dāng)時(shí),若,則;
(一)對數(shù)
1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(底數(shù),真數(shù),對數(shù)式)
說明:1注意底數(shù)的限制,且;
2;
3注意對數(shù)的`書寫格式.
兩個(gè)重要對數(shù):
1常用對數(shù):以10為底的對數(shù);
2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).
對數(shù)式與指數(shù)式的互化
對數(shù)式指數(shù)式
對數(shù)底數(shù)冪底數(shù)
對數(shù)指數(shù)
真數(shù)冪
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。
如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
2對數(shù)函數(shù)對底數(shù)的限制:,且.
2、對數(shù)函數(shù)的性質(zhì):
a1
圖象特征
函數(shù)性質(zhì)
函數(shù)圖象都在y軸右側(cè)
函數(shù)的定義域?yàn)?0,+)
圖象關(guān)于原點(diǎn)和y軸不對稱
非奇非偶函數(shù)
向y軸正負(fù)方向無限延伸
函數(shù)的值域?yàn)閞
函數(shù)圖象都過定點(diǎn)(1,0)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
第一象限的圖象縱坐標(biāo)都大于0
第一象限的圖象縱坐標(biāo)都大于0
第二象限的圖象縱坐標(biāo)都小于0
第二象限的圖象縱坐標(biāo)都小于0
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(diǎn)(1,1);
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.