作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學(xué)能力。優(yōu)秀的教案都具備一些什么特點呢?又該怎么寫呢?下面是小編為大家?guī)淼膬?yōu)秀教案范文,希望大家可以喜歡。
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇一
本節(jié)的重點是不等式的三條基本性質(zhì).難點是不等式的基本性質(zhì)3.掌握不等式的三條基本性質(zhì)是進一步學(xué)習(xí)一元一次不等式(組)的解法等后續(xù)知識的基礎(chǔ).
1.不等式的概念
用不等號(“<”、“>”或“≠”表示不等關(guān)系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)結(jié)合起來,讀作“大于或等于”,或記作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”結(jié)合起來,讀作“小于或等于”,或記作“≯”,也就是“不大于”)等等,也都是不等式.
2.當(dāng)不等式的兩邊都加上或乘以同一個正數(shù)或負(fù)數(shù)時,所得結(jié)果仍是不等式.但變形所得的不等式中不等號的方向,有的與原不等式中不等號的方向相同,有的則不相同.因而敘述時不能籠統(tǒng)說成“……仍是不等式”,而應(yīng)明確變形所得的不等式中不等號的方向.
3.不等式成立與不等式不成立的意義
例如:在不等式 中,字母 表示未知數(shù).當(dāng) 取某一數(shù)值 時, 的值小于2,我們就說當(dāng) 時,不等式 成立;當(dāng) 取另外某一個數(shù)值 時, 的值不小于2,我們就說當(dāng) 時, 不等式不成立.
4.不等式的三條基本性質(zhì)是不等式變形的重要依據(jù),性質(zhì)1、2類似等式性質(zhì),不等號的方向不改變,性質(zhì)3不等號的方向改變,這是不等式獨有的性質(zhì),也是初學(xué)者易錯的地方,因此要特別注意.
目標(biāo)>點
1.了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生運用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運用所學(xué)知識解決實際問題的能力.
(三)德育滲透點
通過引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識,競爭意識.
(四)美育滲透點
通過不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
1.方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
2.學(xué)生學(xué)法:只有準(zhǔn)確理解不等號的幾種形式的意義,才能在實際中進行靈活的運用.
(一)重點
掌握不等式是否成立的判定方法;依題意列出正確的不等式.
(二)難點
依題意列出正確的不等式
(三)疑點
如何把題目中表示不等關(guān)系的詞語準(zhǔn)確地翻譯成相應(yīng)的數(shù)學(xué)符號.
(四)解決方法
在正確理解不等號的意義后,通過抓住體現(xiàn)不等量的關(guān)系的詞語就能準(zhǔn)確列出相應(yīng)的不等式.
一課時.
投影儀或電腦、自制膠片.
1.創(chuàng)設(shè)情境,通過復(fù)習(xí)有關(guān)等式的知識,自然導(dǎo)入??新課的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)熱情.
2.從演示的有關(guān)實驗中,探究相應(yīng)的不等量關(guān)系,從學(xué)生的討論、分析中探究代數(shù)式的不等關(guān)系的幾種常見形式.
3.從師生的互動講解練習(xí)中掌握不等式的有關(guān)知識,并培養(yǎng)學(xué)生具有一定的靈活應(yīng)用能力.
步驟>過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入??
我們已經(jīng)學(xué)過等式和它的基本性質(zhì),請同學(xué)們觀察下面習(xí)題,思考并回答:
(1)什么是等式?等式中“=”兩側(cè)的代數(shù)式能否交換?“=”是否具有方向性?
(2)已知數(shù)值:-5, ,3,0,2,7,判斷:上述數(shù)值哪些使等式 成立?哪些使等式 不成立?
學(xué)生活動:首先自己思考,然后指名回答.
釋疑:①“=”表示相等關(guān)系,它沒有方向性,等號兩例可以相互交換,有時不交換只是因為書寫習(xí)慣,例如方程的解 .
②判斷數(shù)取何值,等式 成立和不成立實質(zhì)上是在判斷給定的數(shù)值是否為方程 的解,因為等式 為一元一次方程,它只有惟一解 ,所以等式 只有在 時成立,此外,均不成立.
【教法說明】設(shè)置上述習(xí)題,目的是使學(xué)生溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
2.探索新知,講授新課
不等式和等式既有聯(lián)系,又有區(qū)別,大家在學(xué)習(xí)時要自覺進行對比,請觀察演示實驗并回答:演示說明什么問題?
師生活動:演示課本第54頁天平稱物重的兩個實例(同時指出演示中物重為 克,每個砝碼重量均為1克),學(xué)生觀察實驗,思考后回答:演示中天平若不平衡說明天平兩邊所放物體的重量不相等.
【教法說明】結(jié)合實際生活中同類量之間具有一種不相等關(guān)系的實例引入不等式的知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣.
在實際生活中,像演示這樣同類量之間具有不相等關(guān)系的例子是大量的、普遍的,這種關(guān)系需用不等式來表示.那么什么是不等式呢?請看:
, ,
, ,
提問:(l)上述式子中有哪些表示數(shù)量關(guān)系的符號?(2)這些符號表示什么關(guān)系?(3)這些符號兩側(cè)的代數(shù)式可以隨意交換位置嗎?(4)什么叫不等式?
學(xué)生活動:觀察式予,思考并回答問題.
答案:(1)分別使用“<”“>”“≠”.(2)表示不等關(guān)系.(3)不可以隨意互換位置.(4)用不等號表示不等關(guān)系的式子叫不等式.
不等號除了“<”“>”“≠”之外,還有無其他形式?
學(xué)生活動:同桌討論,嘗試得到結(jié)論.
釋疑:①不等號除“<”“>”“≠”外,還有“≥”“≤”兩種形式(“≥”是指“>”與“=”結(jié)合起來,讀作“大于或等于”,也可理解成“不小于”;同理“≤”讀作“小于或等于”,也可理解成“不大于”.)現(xiàn)在,我們來研究用“>”“<”表示的不等式.
②不等號“>”“<”表示不等關(guān)系,它們具有方向性,因而不等號兩側(cè)不可互交換,例如 ,不能寫成 .
【教法說明】①通過學(xué)生自己觀察思考,進而猜測出不等式的意義,這種教法充分發(fā)揮了學(xué)生的主體作用.
②通過釋疑,學(xué)生對不等號的種類及其使用有了進一步的了解.
3.嘗試反饋,鞏固知識
同類量之間的大小關(guān)系常用“>”“<”來表示,請同學(xué)們根據(jù)自己對不等式的理解,解答習(xí)題.
(1)用“<”或“>”境空.(搶答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正數(shù);② 是負(fù)數(shù);③ 與3的和小于6;④ 與2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)學(xué)生獨立完成課本第55頁例1.
注意:不是所有同類量都可以比較大小,例如不在同一直線上的兩個力,它們只有等與不等關(guān)系,而無大小關(guān)系,這一點無需向?qū)W生說明.
學(xué)生活動:第(l)題搶答;第(2)題在練習(xí)本上完成,由兩個學(xué)生板演,完成之后,由學(xué)生判斷板演是否正確
活動:巡視輔導(dǎo),統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
【教法說明】①第(1)題是為了調(diào)動積極性,強化競爭意識;第(2)題則是為了訓(xùn)練學(xué)生書面表述能力.
②時要注意引導(dǎo)學(xué)生將題目中表示不等關(guān)系的詞語翻譯成相應(yīng)的不等號,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,請同學(xué)們嘗試解答習(xí)題:
已知數(shù)值;-5, ,3,0,2,-2.5,5.2;
(1)判斷:上述數(shù)值哪些使不等式 成立?哪些使 不成立?
(2)說出幾個使不等式 成立的 的數(shù)值;說出幾個使 不成立的 數(shù)值.
學(xué)生活動:同桌研究討論,嘗試得到答案.
活動:引導(dǎo)學(xué)生回答,使未知數(shù) 的取值不僅有正整數(shù),還有負(fù)數(shù)、零、小數(shù).
師生總結(jié):判定不等式是否成立的方法就是:如果不等號兩側(cè)數(shù)值的大小關(guān)系與不等另一致,稱不等式成立;否則不成立.例如對于 ;當(dāng) 時, 的值小于6,就說 時不等式 成立;當(dāng) 時, 的值不小于6,就說 時, 不成立.
【教法說明】通過學(xué)生自己舉例,培養(yǎng)他們運用已有的知識探索新知識的意識,同時也活躍了課堂氣氛.
4.變式訓(xùn)練,培養(yǎng)能力
(1)當(dāng) 取下列數(shù)值時,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 與3的和小于等于(不大于)6;
②寫出使上述不等式成立的幾個 的數(shù)值;
③ 取何值時,不等式 總成立?取何值時不成立?
學(xué)生在練習(xí)本上完成1題,2題,同桌訂正;抽查,強調(diào)注意事項.
【教法說明】
①使學(xué)生進一步了解使不等式成立的未知數(shù)的值可以有多個,為6.2講解不等式的解集做準(zhǔn)備.
②強化思維能力和歸納總結(jié)能力.
(四)總結(jié)、擴展
學(xué)生小結(jié),師生共同完善:
本節(jié)課的重點內(nèi)容:1.掌握不等式是否成立的判斷方法;2.依題意列出正確的不等式.
注意:列不等式時,要注意把表示不等關(guān)系的詞語用相慶的不等號來表示.例如“不大于”用“≤”表示,而不用“<”表示,這一點學(xué)生容易出現(xiàn)錯誤.
(一)必做題:p61? a組1,2,3.
(二)選做題:
1.單項選擇
(1)絕對值小于3的非負(fù)整數(shù)有( )
a.1,2 b.0,1 c.0,1,2 d.0,1,3
(2)下列選項中,正確的是( )
a. 不是負(fù)數(shù),則
b. 是大于0的數(shù),則
c. 不小于-1,則
d. 是負(fù)數(shù),則
2.依題意列不等式
(1) 的3倍與7的差是非正數(shù)
(2) 與6的和大于9且小于12
(3)a市某天的最低氣溫是-5℃,最高氣溫是10℃,設(shè)這天氣溫為 ℃,則 滿足的條件是____________________.
【設(shè)計說明】1.再現(xiàn)本節(jié)重點,鞏固所學(xué)知識.
2.有層次性地布置作業(yè)?,可以調(diào)動全體學(xué)生的學(xué)習(xí)積極性,這也是實施素質(zhì)的具體體現(xiàn).
參考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)c (2)d
2.(1) (2) (3)
設(shè)計
費? 馬? 數(shù)
費馬( fermat)是17世紀(jì)法國著名數(shù)學(xué)家,是法國南部土魯斯議會的議員,他在數(shù)論、解析幾何、概率論三個方面都有重要貢獻.他無意發(fā)表自己的著作,平生沒有完整的著作問世.去世后,人們才把他寫在書頁空白處和給朋友的書信中,以及一些陳舊手稿中的論述收集匯編成書.費馬特別愛好數(shù)論,在這方面有好幾項成就,如費馬數(shù)、費馬小定理、費馬大定理等.
費馬于1640年前后,在驗算了形如
的數(shù)當(dāng) 的值分別為
3,5,17,257,65537
后(請注意這些數(shù)均為質(zhì)數(shù))便宣稱:對于為任何自然數(shù),是質(zhì)數(shù).
大約過了100年,1732年數(shù)學(xué)家歐拉()指出
.
從而否定了費馬的上述結(jié)論(猜想).
爾后,人們又對 進行了大量研究,發(fā)現(xiàn)在 中,除了上述五個質(zhì)數(shù)外,人們尚未再發(fā)現(xiàn)新的質(zhì)數(shù).
雖然費馬的這個猜想是錯誤的,但為了紀(jì)念這位數(shù)學(xué)家,人們?nèi)园堰@種形式的數(shù)叫做費馬數(shù).
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇二
本節(jié)教學(xué)的重點是不等式的三條基本性質(zhì).難點是不等式的基本性質(zhì)3.掌握不等式的三條基本性質(zhì)是進一步學(xué)習(xí)一元一次不等式(組)的解法等后續(xù)知識的基礎(chǔ).
1.不等式的概念
用不等號(“<”、“>”或“≠”表示不等關(guān)系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)結(jié)合起來,讀作“大于或等于”,或記作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”結(jié)合起來,讀作“小于或等于”,或記作“≯”,也就是“不大于”)等等,也都是不等式.
2.當(dāng)不等式的兩邊都加上或乘以同一個正數(shù)或負(fù)數(shù)時,所得結(jié)果仍是不等式.但變形所得的不等式中不等號的方向,有的與原不等式中不等號的方向相同,有的則不相同.因而敘述時不能籠統(tǒng)說成“……仍是不等式”,而應(yīng)明確變形所得的不等式中不等號的方向.
3.不等式成立與不等式不成立的意義
例如:在不等式 中,字母 表示未知數(shù).當(dāng) 取某一數(shù)值 時, 的值小于2,我們就說當(dāng) 時,不等式 成立;當(dāng) 取另外某一個數(shù)值 時, 的值不小于2,我們就說當(dāng) 時, 不等式不成立.
4.不等式的三條基本性質(zhì)是不等式變形的重要依據(jù),性質(zhì)1、2類似等式性質(zhì),不等號的方向不改變,性質(zhì)3不等號的方向改變,這是不等式獨有的性質(zhì),也是初學(xué)者易錯的地方,因此要特別注意.
(-)知識教學(xué)點
1.了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生運用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運用所學(xué)知識解決實際問題的能力.
(三)德育滲透點
通過引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識,競爭意識.
(四)美育滲透點
通過不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
1.教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
2.學(xué)生學(xué)法:只有準(zhǔn)確理解不等號的幾種形式的意義,才能在實際中進行靈活的運用.
(一)重點
掌握不等式是否成立的判定方法;依題意列出正確的不等式.
(二)難點
依題意列出正確的不等式
(三)疑點
如何把題目中表示不等關(guān)系的詞語準(zhǔn)確地翻譯成相應(yīng)的數(shù)學(xué)符號.
(四)解決方法
在正確理解不等號的意義后,通過抓住體現(xiàn)不等量的關(guān)系的詞語就能準(zhǔn)確列出相應(yīng)的不等式.
一課時.
投影儀或電腦、自制膠片.
1.創(chuàng)設(shè)情境,通過復(fù)習(xí)有關(guān)等式的知識,自然導(dǎo)入??新課的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)熱情.
2.從演示的有關(guān)實驗中,探究相應(yīng)的不等量關(guān)系,從學(xué)生的討論、分析中探究代數(shù)式的不等關(guān)系的幾種常見形式.
3.從師生的互動講解練習(xí)中掌握不等式的有關(guān)知識,并培養(yǎng)學(xué)生具有一定的靈活應(yīng)用能力.
(一)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)依題意正確迅速地列出不等式.
(二)整體感知
通過復(fù)習(xí)等式創(chuàng)設(shè)情境,自然過渡到不等式的學(xué)習(xí)過程中,又通過細(xì)心的分析、審題尋找出正確的不等量關(guān)系,從而列出正確的不等式.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入??
我們已經(jīng)學(xué)過等式和它的基本性質(zhì),請同學(xué)們觀察下面習(xí)題,思考并回答:
(1)什么是等式?等式中“=”兩側(cè)的代數(shù)式能否交換?“=”是否具有方向性?
(2)已知數(shù)值:-5, ,3,0,2,7,判斷:上述數(shù)值哪些使等式 成立?哪些使等式 不成立?
學(xué)生活動:首先自己思考,然后指名回答.
教師釋疑:①“=”表示相等關(guān)系,它沒有方向性,等號兩例可以相互交換,有時不交換只是因為書寫習(xí)慣,例如方程的解 .
②判斷數(shù)取何值,等式 成立和不成立實質(zhì)上是在判斷給定的數(shù)值是否為方程 的解,因為等式 為一元一次方程,它只有惟一解 ,所以等式 只有在 時成立,此外,均不成立.
【教法說明】設(shè)置上述習(xí)題,目的是使學(xué)生溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
2.探索新知,講授新課
不等式和等式既有聯(lián)系,又有區(qū)別,大家在學(xué)習(xí)時要自覺進行對比,請觀察演示實驗并回答:演示說明什么問題?
師生活動:教師演示課本第54頁天平稱物重的兩個實例(同時指出演示中物重為 克,每個砝碼重量均為1克),學(xué)生觀察實驗,思考后回答:演示中天平若不平衡說明天平兩邊所放物體的重量不相等.
【教法說明】結(jié)合實際生活中同類量之間具有一種不相等關(guān)系的實例引入不等式的知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣.
在實際生活中,像演示這樣同類量之間具有不相等關(guān)系的例子是大量的、普遍的,這種關(guān)系需用不等式來表示.那么什么是不等式呢?請看:
, ,
, ,
提問:(l)上述式子中有哪些表示數(shù)量關(guān)系的符號?(2)這些符號表示什么關(guān)系?(3)這些符號兩側(cè)的代數(shù)式可以隨意交換位置嗎?(4)什么叫不等式?
學(xué)生活動:觀察式予,思考并回答問題.
答案:(1)分別使用“<”“>”“≠”.(2)表示不等關(guān)系.(3)不可以隨意互換位置.(4)用不等號表示不等關(guān)系的式子叫不等式.
不等號除了“<”“>”“≠”之外,還有無其他形式?
學(xué)生活動:同桌討論,嘗試得到結(jié)論.
教師釋疑:①不等號除“<”“>”“≠”外,還有“≥”“≤”兩種形式(“≥”是指“>”與“=”結(jié)合起來,讀作“大于或等于”,也可理解成“不小于”;同理“≤”讀作“小于或等于”,也可理解成“不大于”.)現(xiàn)在,我們來研究用“>”“<”表示的不等式.
②不等號“>”“<”表示不等關(guān)系,它們具有方向性,因而不等號兩側(cè)不可互交換,例如 ,不能寫成 .
【教法說明】①通過學(xué)生自己觀察思考,進而猜測出不等式的意義,這種教法充分發(fā)揮了學(xué)生的主體作用.
②通過教師釋疑,學(xué)生對不等號的種類及其使用有了進一步的了解.
3.嘗試反饋,鞏固知識
同類量之間的大小關(guān)系常用“>”“<”來表示,請同學(xué)們根據(jù)自己對不等式的理解,解答習(xí)題.
(1)用“<”或“>”境空.(搶答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正數(shù);② 是負(fù)數(shù);③ 與3的和小于6;④ 與2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)學(xué)生獨立完成課本第55頁例1.
注意:不是所有同類量都可以比較大小,例如不在同一直線上的兩個力,它們只有等與不等關(guān)系,而無大小關(guān)系,這一點無需向?qū)W生說明.
學(xué)生活動:第(l)題搶答;第(2)題在練習(xí)本上完成,由兩個學(xué)生板演,完成之后,由學(xué)生判斷板演是否正確
教師活動:巡視輔導(dǎo),統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
【教法說明】①第(1)題是為了調(diào)動積極性,強化競爭意識;第(2)題則是為了訓(xùn)練學(xué)生書面表述能力.
②教學(xué)時要注意引導(dǎo)學(xué)生將題目中表示不等關(guān)系的詞語翻譯成相應(yīng)的不等號,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,請同學(xué)們嘗試解答習(xí)題:
已知數(shù)值;-5, ,3,0,2,-2.5,5.2;
(1)判斷:上述數(shù)值哪些使不等式 成立?哪些使 不成立?
(2)說出幾個使不等式 成立的 的數(shù)值;說出幾個使 不成立的 數(shù)值.
學(xué)生活動:同桌研究討論,嘗試得到答案.
教師活動:引導(dǎo)學(xué)生回答,使未知數(shù) 的取值不僅有正整數(shù),還有負(fù)數(shù)、零、小數(shù).
師生總結(jié):判定不等式是否成立的方法就是:如果不等號兩側(cè)數(shù)值的大小關(guān)系與不等另一致,稱不等式成立;否則不成立.例如對于 ;當(dāng) 時, 的值小于6,就說 時不等式 成立;當(dāng) 時, 的值不小于6,就說 時, 不成立.
【教法說明】通過學(xué)生自己舉例,培養(yǎng)他們運用已有的知識探索新知識的意識,同時也活躍了課堂氣氛.
4.變式訓(xùn)練,培養(yǎng)能力
(1)當(dāng) 取下列數(shù)值時,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 與3的和小于等于(不大于)6;
②寫出使上述不等式成立的幾個 的數(shù)值;
③ 取何值時,不等式 總成立?取何值時不成立?
學(xué)生在練習(xí)本上完成1題,2題,同桌訂正;教師抽查,強調(diào)注意事項.
【教法說明】
①使學(xué)生進一步了解使不等式成立的未知數(shù)的值可以有多個,為6.2講解不等式的解集做準(zhǔn)備.
②強化思維能力和歸納總結(jié)能力.
(四)總結(jié)、擴展
學(xué)生小結(jié),師生共同完善:
本節(jié)課的重點內(nèi)容:1.掌握不等式是否成立的判斷方法;2.依題意列出正確的不等式.
注意:列不等式時,要注意把表示不等關(guān)系的詞語用相慶的不等號來表示.例如“不大于”用“≤”表示,而不用“<”表示,這一點學(xué)生容易出現(xiàn)錯誤.
(一)必做題:p61? a組1,2,3.
(二)選做題:
1.單項選擇
(1)絕對值小于3的非負(fù)整數(shù)有( )
a.1,2 b.0,1 c.0,1,2 d.0,1,3
(2)下列選項中,正確的是( )
a. 不是負(fù)數(shù),則
b. 是大于0的數(shù),則
c. 不小于-1,則
d. 是負(fù)數(shù),則
2.依題意列不等式
(1) 的3倍與7的差是非正數(shù)
(2) 與6的和大于9且小于12
(3)a市某天的最低氣溫是-5℃,最高氣溫是10℃,設(shè)這天氣溫為 ℃,則 滿足的條件是____________________.
【設(shè)計說明】1.再現(xiàn)本節(jié)重點,鞏固所學(xué)知識.
2.有層次性地布置作業(yè)?,可以調(diào)動全體學(xué)生的學(xué)習(xí)積極性,這也是實施素質(zhì)教育的具體體現(xiàn).
參考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)c (2)d
2.(1) (2) (3)
6.1? (一)
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等關(guān)系的式子叫不等式.
重點研究“>”“<”
二、依題意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式 能否成立
時, (√); 時, (×);
時, (×)
四、歸納總結(jié)重點
(一)依題意列不等式.
(二)會判斷不等式是否成立.
費? 馬? 數(shù)
費馬( fermat)是17世紀(jì)法國著名數(shù)學(xué)家,是法國南部土魯斯議會的議員,他在數(shù)論、解析幾何、概率論三個方面都有重要貢獻.他無意發(fā)表自己的著作,平生沒有完整的著作問世.去世后,人們才把他寫在書頁空白處和給朋友的書信中,以及一些陳舊手稿中的論述收集匯編成書.費馬特別愛好數(shù)論,在這方面有好幾項成就,如費馬數(shù)、費馬小定理、費馬大定理等.
費馬于1640年前后,在驗算了形如
的數(shù)當(dāng) 的值分別為
3,5,17,257,65537
后(請注意這些數(shù)均為質(zhì)數(shù))便宣稱:對于為任何自然數(shù),是質(zhì)數(shù).
大約過了100年,1732年數(shù)學(xué)家歐拉()指出
.
從而否定了費馬的上述結(jié)論(猜想).
爾后,人們又對 進行了大量研究,發(fā)現(xiàn)在 中,除了上述五個質(zhì)數(shù)外,人們尚未再發(fā)現(xiàn)新的質(zhì)數(shù).
雖然費馬的這個猜想是錯誤的,但為了紀(jì)念這位數(shù)學(xué)家,人們?nèi)园堰@種形式的數(shù)叫做費馬數(shù).
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇三
建議
本節(jié)的重點是不等式的三條基本性質(zhì).難點是不等式的基本性質(zhì)3.掌握不等式的三條基本性質(zhì)是進一步學(xué)習(xí)一元一次不等式(組)的解法等后續(xù)知識的基礎(chǔ).
1.不等式的概念
用不等號(“<”、“>”或“≠”表示不等關(guān)系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)結(jié)合起來,讀作“大于或等于”,或記作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”結(jié)合起來,讀作“小于或等于”,或記作“≯”,也就是“不大于”)等等,也都是不等式.
2.當(dāng)不等式的兩邊都加上或乘以同一個正數(shù)或負(fù)數(shù)時,所得結(jié)果仍是不等式.但變形所得的不等式中不等號的方向,有的與原不等式中不等號的方向相同,有的則不相同.因而敘述時不能籠統(tǒng)說成“……仍是不等式”,而應(yīng)明確變形所得的不等式中不等號的方向.
3.不等式成立與不等式不成立的意義
例如:在不等式 中,字母 表示未知數(shù).當(dāng) 取某一數(shù)值 時, 的值小于2,我們就說當(dāng) 時,不等式 成立;當(dāng) 取另外某一個數(shù)值 時, 的值不小于2,我們就說當(dāng) 時, 不等式不成立.
4.不等式的三條基本性質(zhì)是不等式變形的重要依據(jù),性質(zhì)1、2類似等式性質(zhì),不等號的方向不改變,性質(zhì)3不等號的方向改變,這是不等式獨有的性質(zhì),也是初學(xué)者易錯的地方,因此要特別注意.
目標(biāo)>點
1.了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生運用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運用所學(xué)知識解決實際問題的能力.
(三)德育滲透點
通過引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識,競爭意識.
(四)美育滲透點
通過不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
1.方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
2.學(xué)生學(xué)法:只有準(zhǔn)確理解不等號的幾種形式的意義,才能在實際中進行靈活的運用.
(一)重點
掌握不等式是否成立的判定方法;依題意列出正確的不等式.
(二)難點
依題意列出正確的不等式
(三)疑點
如何把題目中表示不等關(guān)系的詞語準(zhǔn)確地翻譯成相應(yīng)的數(shù)學(xué)符號.
(四)解決方法
在正確理解不等號的意義后,通過抓住體現(xiàn)不等量的關(guān)系的詞語就能準(zhǔn)確列出相應(yīng)的不等式.
一課時.
投影儀或電腦、自制膠片.
1.創(chuàng)設(shè)情境,通過復(fù)習(xí)有關(guān)等式的知識,自然導(dǎo)入??新課的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)熱情.
2.從演示的有關(guān)實驗中,探究相應(yīng)的不等量關(guān)系,從學(xué)生的討論、分析中探究代數(shù)式的不等關(guān)系的幾種常見形式.
3.從師生的互動講解練習(xí)中掌握不等式的有關(guān)知識,并培養(yǎng)學(xué)生具有一定的靈活應(yīng)用能力.
步驟>過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入??
我們已經(jīng)學(xué)過等式和它的基本性質(zhì),請同學(xué)們觀察下面習(xí)題,思考并回答:
(1)什么是等式?等式中“=”兩側(cè)的代數(shù)式能否交換?“=”是否具有方向性?
(2)已知數(shù)值:-5, ,3,0,2,7,判斷:上述數(shù)值哪些使等式 成立?哪些使等式 不成立?
學(xué)生活動:首先自己思考,然后指名回答.
釋疑:①“=”表示相等關(guān)系,它沒有方向性,等號兩例可以相互交換,有時不交換只是因為書寫習(xí)慣,例如方程的解 .
②判斷數(shù)取何值,等式 成立和不成立實質(zhì)上是在判斷給定的數(shù)值是否為方程 的解,因為等式 為一元一次方程,它只有惟一解 ,所以等式 只有在 時成立,此外,均不成立.
【教法說明】設(shè)置上述習(xí)題,目的是使學(xué)生溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
2.探索新知,講授新課
不等式和等式既有聯(lián)系,又有區(qū)別,大家在學(xué)習(xí)時要自覺進行對比,請觀察演示實驗并回答:演示說明什么問題?
師生活動:演示課本第54頁天平稱物重的兩個實例(同時指出演示中物重為 克,每個砝碼重量均為1克),學(xué)生觀察實驗,思考后回答:演示中天平若不平衡說明天平兩邊所放物體的重量不相等.
【教法說明】結(jié)合實際生活中同類量之間具有一種不相等關(guān)系的實例引入不等式的知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣.
在實際生活中,像演示這樣同類量之間具有不相等關(guān)系的例子是大量的、普遍的,這種關(guān)系需用不等式來表示.那么什么是不等式呢?請看:
, ,
, ,
提問:(l)上述式子中有哪些表示數(shù)量關(guān)系的符號?(2)這些符號表示什么關(guān)系?(3)這些符號兩側(cè)的代數(shù)式可以隨意交換位置嗎?(4)什么叫不等式?
學(xué)生活動:觀察式予,思考并回答問題.
答案:(1)分別使用“<”“>”“≠”.(2)表示不等關(guān)系.(3)不可以隨意互換位置.(4)用不等號表示不等關(guān)系的式子叫不等式.
不等號除了“<”“>”“≠”之外,還有無其他形式?
學(xué)生活動:同桌討論,嘗試得到結(jié)論.
釋疑:①不等號除“<”“>”“≠”外,還有“≥”“≤”兩種形式(“≥”是指“>”與“=”結(jié)合起來,讀作“大于或等于”,也可理解成“不小于”;同理“≤”讀作“小于或等于”,也可理解成“不大于”.)現(xiàn)在,我們來研究用“>”“<”表示的不等式.
②不等號“>”“<”表示不等關(guān)系,它們具有方向性,因而不等號兩側(cè)不可互交換,例如 ,不能寫成 .
【教法說明】①通過學(xué)生自己觀察思考,進而猜測出不等式的意義,這種教法充分發(fā)揮了學(xué)生的主體作用.
②通過釋疑,學(xué)生對不等號的種類及其使用有了進一步的了解.
3.嘗試反饋,鞏固知識
同類量之間的大小關(guān)系常用“>”“<”來表示,請同學(xué)們根據(jù)自己對不等式的理解,解答習(xí)題.
(1)用“<”或“>”境空.(搶答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正數(shù);② 是負(fù)數(shù);③ 與3的和小于6;④ 與2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)學(xué)生獨立完成課本第55頁例1.
注意:不是所有同類量都可以比較大小,例如不在同一直線上的兩個力,它們只有等與不等關(guān)系,而無大小關(guān)系,這一點無需向?qū)W生說明.
學(xué)生活動:第(l)題搶答;第(2)題在練習(xí)本上完成,由兩個學(xué)生板演,完成之后,由學(xué)生判斷板演是否正確
活動:巡視輔導(dǎo),統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
【教法說明】①第(1)題是為了調(diào)動積極性,強化競爭意識;第(2)題則是為了訓(xùn)練學(xué)生書面表述能力.
②時要注意引導(dǎo)學(xué)生將題目中表示不等關(guān)系的詞語翻譯成相應(yīng)的不等號,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,請同學(xué)們嘗試解答習(xí)題:
已知數(shù)值;-5, ,3,0,2,-2.5,5.2;
(1)判斷:上述數(shù)值哪些使不等式 成立?哪些使 不成立?
(2)說出幾個使不等式 成立的 的數(shù)值;說出幾個使 不成立的 數(shù)值.
學(xué)生活動:同桌研究討論,嘗試得到答案.
活動:引導(dǎo)學(xué)生回答,使未知數(shù) 的取值不僅有正整數(shù),還有負(fù)數(shù)、零、小數(shù).
師生總結(jié):判定不等式是否成立的方法就是:如果不等號兩側(cè)數(shù)值的大小關(guān)系與不等另一致,稱不等式成立;否則不成立.例如對于 ;當(dāng) 時, 的值小于6,就說 時不等式 成立;當(dāng) 時, 的值不小于6,就說 時, 不成立.
【教法說明】通過學(xué)生自己舉例,培養(yǎng)他們運用已有的知識探索新知識的意識,同時也活躍了課堂氣氛.
4.變式訓(xùn)練,培養(yǎng)能力
(1)當(dāng) 取下列數(shù)值時,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 與3的和小于等于(不大于)6;
②寫出使上述不等式成立的幾個 的數(shù)值;
③ 取何值時,不等式 總成立?取何值時不成立?
學(xué)生在練習(xí)本上完成1題,2題,同桌訂正;抽查,強調(diào)注意事項.
【教法說明】
①使學(xué)生進一步了解使不等式成立的未知數(shù)的值可以有多個,為6.2講解不等式的解集做準(zhǔn)備.
②強化思維能力和歸納總結(jié)能力.
(四)總結(jié)、擴展
學(xué)生小結(jié),師生共同完善:
本節(jié)課的重點內(nèi)容:1.掌握不等式是否成立的判斷方法;2.依題意列出正確的不等式.
注意:列不等式時,要注意把表示不等關(guān)系的詞語用相慶的不等號來表示.例如“不大于”用“≤”表示,而不用“<”表示,這一點學(xué)生容易出現(xiàn)錯誤.
(一)必做題:p61? a組1,2,3.
(二)選做題:
1.單項選擇
(1)絕對值小于3的非負(fù)整數(shù)有( )
a.1,2 b.0,1 c.0,1,2 d.0,1,3
(2)下列選項中,正確的是( )
a. 不是負(fù)數(shù),則
b. 是大于0的數(shù),則
c. 不小于-1,則
d. 是負(fù)數(shù),則
2.依題意列不等式
(1) 的3倍與7的差是非正數(shù)
(2) 與6的和大于9且小于12
(3)a市某天的最低氣溫是-5℃,最高氣溫是10℃,設(shè)這天氣溫為 ℃,則 滿足的條件是____________________.
【設(shè)計說明】1.再現(xiàn)本節(jié)重點,鞏固所學(xué)知識.
2.有層次性地布置作業(yè)?,可以調(diào)動全體學(xué)生的學(xué)習(xí)積極性,這也是實施素質(zhì)的具體體現(xiàn).
參考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)c (2)d
2.(1) (2) (3)
設(shè)計
費? 馬? 數(shù)
費馬( fermat)是17世紀(jì)法國著名數(shù)學(xué)家,是法國南部土魯斯議會的議員,他在數(shù)論、解析幾何、概率論三個方面都有重要貢獻.他無意發(fā)表自己的著作,平生沒有完整的著作問世.去世后,人們才把他寫在書頁空白處和給朋友的書信中,以及一些陳舊手稿中的論述收集匯編成書.費馬特別愛好數(shù)論,在這方面有好幾項成就,如費馬數(shù)、費馬小定理、費馬大定理等.
費馬于1640年前后,在驗算了形如
的數(shù)當(dāng) 的值分別為
3,5,17,257,65537
后(請注意這些數(shù)均為質(zhì)數(shù))便宣稱:對于為任何自然數(shù),是質(zhì)數(shù).
大約過了100年,1732年數(shù)學(xué)家歐拉()指出
.
從而否定了費馬的上述結(jié)論(猜想).
爾后,人們又對 進行了大量研究,發(fā)現(xiàn)在 中,除了上述五個質(zhì)數(shù)外,人們尚未再發(fā)現(xiàn)新的質(zhì)數(shù).
雖然費馬的這個猜想是錯誤的,但為了紀(jì)念這位數(shù)學(xué)家,人們?nèi)园堰@種形式的數(shù)叫做費馬數(shù).
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇四
本節(jié)教學(xué)的重點是不等式的三條基本性質(zhì).難點是不等式的基本性質(zhì)3.掌握不等式的三條基本性質(zhì)是進一步學(xué)習(xí)一元一次不等式(組)的解法等后續(xù)知識的基礎(chǔ).
1.不等式的概念
用不等號(“<”、“>”或“≠”表示不等關(guān)系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)結(jié)合起來,讀作“大于或等于”,或記作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”結(jié)合起來,讀作“小于或等于”,或記作“≯”,也就是“不大于”)等等,也都是不等式.
2.當(dāng)不等式的兩邊都加上或乘以同一個正數(shù)或負(fù)數(shù)時,所得結(jié)果仍是不等式.但變形所得的不等式中不等號的方向,有的與原不等式中不等號的方向相同,有的則不相同.因而敘述時不能籠統(tǒng)說成“……仍是不等式”,而應(yīng)明確變形所得的不等式中不等號的方向.
3.不等式成立與不等式不成立的意義
例如:在不等式 中,字母 表示未知數(shù).當(dāng) 取某一數(shù)值 時, 的值小于2,我們就說當(dāng) 時,不等式 成立;當(dāng) 取另外某一個數(shù)值 時, 的值不小于2,我們就說當(dāng) 時, 不等式不成立.
4.不等式的三條基本性質(zhì)是不等式變形的重要依據(jù),性質(zhì)1、2類似等式性質(zhì),不等號的方向不改變,性質(zhì)3不等號的方向改變,這是不等式獨有的性質(zhì),也是初學(xué)者易錯的地方,因此要特別注意.
(-)知識教學(xué)點
1.了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生運用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運用所學(xué)知識解決實際問題的能力.
(三)德育滲透點
通過引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識,競爭意識.
(四)美育滲透點
通過不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
1.教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
2.學(xué)生學(xué)法:只有準(zhǔn)確理解不等號的幾種形式的意義,才能在實際中進行靈活的運用.
(一)重點
掌握不等式是否成立的判定方法;依題意列出正確的不等式.
(二)難點
依題意列出正確的不等式
(三)疑點
如何把題目中表示不等關(guān)系的詞語準(zhǔn)確地翻譯成相應(yīng)的數(shù)學(xué)符號.
(四)解決方法
在正確理解不等號的意義后,通過抓住體現(xiàn)不等量的關(guān)系的詞語就能準(zhǔn)確列出相應(yīng)的不等式.
一課時.
投影儀或電腦、自制膠片.
1.創(chuàng)設(shè)情境,通過復(fù)習(xí)有關(guān)等式的知識,自然導(dǎo)入??新課的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)熱情.
2.從演示的有關(guān)實驗中,探究相應(yīng)的不等量關(guān)系,從學(xué)生的討論、分析中探究代數(shù)式的不等關(guān)系的幾種常見形式.
3.從師生的互動講解練習(xí)中掌握不等式的有關(guān)知識,并培養(yǎng)學(xué)生具有一定的靈活應(yīng)用能力.
(一)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)依題意正確迅速地列出不等式.
(二)整體感知
通過復(fù)習(xí)等式創(chuàng)設(shè)情境,自然過渡到不等式的學(xué)習(xí)過程中,又通過細(xì)心的分析、審題尋找出正確的不等量關(guān)系,從而列出正確的不等式.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入??
我們已經(jīng)學(xué)過等式和它的基本性質(zhì),請同學(xué)們觀察下面習(xí)題,思考并回答:
(1)什么是等式?等式中“=”兩側(cè)的代數(shù)式能否交換?“=”是否具有方向性?
(2)已知數(shù)值:-5, ,3,0,2,7,判斷:上述數(shù)值哪些使等式 成立?哪些使等式 不成立?
學(xué)生活動:首先自己思考,然后指名回答.
教師釋疑:①“=”表示相等關(guān)系,它沒有方向性,等號兩例可以相互交換,有時不交換只是因為書寫習(xí)慣,例如方程的解 .
②判斷數(shù)取何值,等式 成立和不成立實質(zhì)上是在判斷給定的數(shù)值是否為方程 的解,因為等式 為一元一次方程,它只有惟一解 ,所以等式 只有在 時成立,此外,均不成立.
【教法說明】設(shè)置上述習(xí)題,目的是使學(xué)生溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
2.探索新知,講授新課
不等式和等式既有聯(lián)系,又有區(qū)別,大家在學(xué)習(xí)時要自覺進行對比,請觀察演示實驗并回答:演示說明什么問題?
師生活動:教師演示課本第54頁天平稱物重的兩個實例(同時指出演示中物重為 克,每個砝碼重量均為1克),學(xué)生觀察實驗,思考后回答:演示中天平若不平衡說明天平兩邊所放物體的重量不相等.
【教法說明】結(jié)合實際生活中同類量之間具有一種不相等關(guān)系的實例引入不等式的知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣.
在實際生活中,像演示這樣同類量之間具有不相等關(guān)系的例子是大量的、普遍的,這種關(guān)系需用不等式來表示.那么什么是不等式呢?請看:
, ,
, ,
提問:(l)上述式子中有哪些表示數(shù)量關(guān)系的符號?(2)這些符號表示什么關(guān)系?(3)這些符號兩側(cè)的代數(shù)式可以隨意交換位置嗎?(4)什么叫不等式?
學(xué)生活動:觀察式予,思考并回答問題.
答案:(1)分別使用“<”“>”“≠”.(2)表示不等關(guān)系.(3)不可以隨意互換位置.(4)用不等號表示不等關(guān)系的式子叫不等式.
不等號除了“<”“>”“≠”之外,還有無其他形式?
學(xué)生活動:同桌討論,嘗試得到結(jié)論.
教師釋疑:①不等號除“<”“>”“≠”外,還有“≥”“≤”兩種形式(“≥”是指“>”與“=”結(jié)合起來,讀作“大于或等于”,也可理解成“不小于”;同理“≤”讀作“小于或等于”,也可理解成“不大于”.)現(xiàn)在,我們來研究用“>”“<”表示的不等式.
②不等號“>”“<”表示不等關(guān)系,它們具有方向性,因而不等號兩側(cè)不可互交換,例如 ,不能寫成 .
【教法說明】①通過學(xué)生自己觀察思考,進而猜測出不等式的意義,這種教法充分發(fā)揮了學(xué)生的主體作用.
②通過教師釋疑,學(xué)生對不等號的種類及其使用有了進一步的了解.
3.嘗試反饋,鞏固知識
同類量之間的大小關(guān)系常用“>”“<”來表示,請同學(xué)們根據(jù)自己對不等式的理解,解答習(xí)題.
(1)用“<”或“>”境空.(搶答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正數(shù);② 是負(fù)數(shù);③ 與3的和小于6;④ 與2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)學(xué)生獨立完成課本第55頁例1.
注意:不是所有同類量都可以比較大小,例如不在同一直線上的兩個力,它們只有等與不等關(guān)系,而無大小關(guān)系,這一點無需向?qū)W生說明.
學(xué)生活動:第(l)題搶答;第(2)題在練習(xí)本上完成,由兩個學(xué)生板演,完成之后,由學(xué)生判斷板演是否正確
教師活動:巡視輔導(dǎo),統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
【教法說明】①第(1)題是為了調(diào)動積極性,強化競爭意識;第(2)題則是為了訓(xùn)練學(xué)生書面表述能力.
②教學(xué)時要注意引導(dǎo)學(xué)生將題目中表示不等關(guān)系的詞語翻譯成相應(yīng)的不等號,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,請同學(xué)們嘗試解答習(xí)題:
已知數(shù)值;-5, ,3,0,2,-2.5,5.2;
(1)判斷:上述數(shù)值哪些使不等式 成立?哪些使 不成立?
(2)說出幾個使不等式 成立的 的數(shù)值;說出幾個使 不成立的 數(shù)值.
學(xué)生活動:同桌研究討論,嘗試得到答案.
教師活動:引導(dǎo)學(xué)生回答,使未知數(shù) 的取值不僅有正整數(shù),還有負(fù)數(shù)、零、小數(shù).
師生總結(jié):判定不等式是否成立的方法就是:如果不等號兩側(cè)數(shù)值的大小關(guān)系與不等另一致,稱不等式成立;否則不成立.例如對于 ;當(dāng) 時, 的值小于6,就說 時不等式 成立;當(dāng) 時, 的值不小于6,就說 時, 不成立.
【教法說明】通過學(xué)生自己舉例,培養(yǎng)他們運用已有的知識探索新知識的意識,同時也活躍了課堂氣氛.
4.變式訓(xùn)練,培養(yǎng)能力
(1)當(dāng) 取下列數(shù)值時,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 與3的和小于等于(不大于)6;
②寫出使上述不等式成立的幾個 的數(shù)值;
③ 取何值時,不等式 總成立?取何值時不成立?
學(xué)生在練習(xí)本上完成1題,2題,同桌訂正;教師抽查,強調(diào)注意事項.
【教法說明】
①使學(xué)生進一步了解使不等式成立的未知數(shù)的值可以有多個,為6.2講解不等式的解集做準(zhǔn)備.
②強化思維能力和歸納總結(jié)能力.
(四)總結(jié)、擴展
學(xué)生小結(jié),師生共同完善:
本節(jié)課的重點內(nèi)容:1.掌握不等式是否成立的判斷方法;2.依題意列出正確的不等式.
注意:列不等式時,要注意把表示不等關(guān)系的詞語用相慶的不等號來表示.例如“不大于”用“≤”表示,而不用“<”表示,這一點學(xué)生容易出現(xiàn)錯誤.
(一)必做題:p61? a組1,2,3.
(二)選做題:
1.單項選擇
(1)絕對值小于3的非負(fù)整數(shù)有( )
a.1,2 b.0,1 c.0,1,2 d.0,1,3
(2)下列選項中,正確的是( )
a. 不是負(fù)數(shù),則
b. 是大于0的數(shù),則
c. 不小于-1,則
d. 是負(fù)數(shù),則
2.依題意列不等式
(1) 的3倍與7的差是非正數(shù)
(2) 與6的和大于9且小于12
(3)a市某天的最低氣溫是-5℃,最高氣溫是10℃,設(shè)這天氣溫為 ℃,則 滿足的條件是____________________.
【設(shè)計說明】1.再現(xiàn)本節(jié)重點,鞏固所學(xué)知識.
2.有層次性地布置作業(yè)?,可以調(diào)動全體學(xué)生的學(xué)習(xí)積極性,這也是實施素質(zhì)教育的具體體現(xiàn).
參考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)c (2)d
2.(1) (2) (3)
6.1? (一)
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等關(guān)系的式子叫不等式.
重點研究“>”“<”
二、依題意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式 能否成立
時, (√); 時, (×);
時, (×)
四、歸納總結(jié)重點
(一)依題意列不等式.
(二)會判斷不等式是否成立.
費? 馬? 數(shù)
費馬( fermat)是17世紀(jì)法國著名數(shù)學(xué)家,是法國南部土魯斯議會的議員,他在數(shù)論、解析幾何、概率論三個方面都有重要貢獻.他無意發(fā)表自己的著作,平生沒有完整的著作問世.去世后,人們才把他寫在書頁空白處和給朋友的書信中,以及一些陳舊手稿中的論述收集匯編成書.費馬特別愛好數(shù)論,在這方面有好幾項成就,如費馬數(shù)、費馬小定理、費馬大定理等.
費馬于1640年前后,在驗算了形如
的數(shù)當(dāng) 的值分別為
3,5,17,257,65537
后(請注意這些數(shù)均為質(zhì)數(shù))便宣稱:對于為任何自然數(shù),是質(zhì)數(shù).
大約過了100年,1732年數(shù)學(xué)家歐拉()指出
.
從而否定了費馬的上述結(jié)論(猜想).
爾后,人們又對 進行了大量研究,發(fā)現(xiàn)在 中,除了上述五個質(zhì)數(shù)外,人們尚未再發(fā)現(xiàn)新的質(zhì)數(shù).
雖然費馬的這個猜想是錯誤的,但為了紀(jì)念這位數(shù)學(xué)家,人們?nèi)园堰@種形式的數(shù)叫做費馬數(shù).
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇五
一、素質(zhì)目標(biāo)
(一)知識點
1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
2.靈活運用不等式的基本性質(zhì)進行不等式形.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生運用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.
(三)德育滲透點
培養(yǎng)學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
(四)美育滲透點
通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。
二、學(xué)法引導(dǎo)
1.方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.
2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強化學(xué)生對知識的理解與掌握.
三、重點·難點·疑點及解決辦法
(一)重點
掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
(二)難點
正確應(yīng)用不等式的三條基本性質(zhì)進行不等式變形.
(三)疑點
弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點.
(四)解決辦法
講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.
四、課時安排
一課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).
2.通過的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).
3.通過的及學(xué)生的互動練習(xí),體現(xiàn)出以學(xué)生為主體,為主導(dǎo)的模式能更好地對學(xué)生實施素質(zhì).
七、步驟
(-)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.
(二)整體感知
通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實際應(yīng)用某條性質(zhì)時應(yīng)注意的使用條件,同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進行比較:相同點為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個數(shù)或同一個整式.不同點是對于等式來說,在等式的兩邊乘以(或除以)同一個正數(shù)(或同一個負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個正數(shù)去乘(或除)不等式兩邊時,不等號方向不變;而在用同一個負(fù)數(shù)去乘(或除)不等式兩邊時,不等號要改變方向.這是在不等式變形時應(yīng)特別注意的地方.
(三)過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
什么是等式?等式的基本性質(zhì)是什么?
學(xué)生活動:獨立思考,指名回答.
活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.
請同學(xué)們繼續(xù)觀察習(xí)題:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪題的不等號與7>4一致?
學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.
【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).
學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).
活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質(zhì),同時.
不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?
學(xué)生活動:觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.
【教法說明】觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?0呢?為什么?
師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時.
不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.
不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
師生活動:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.
學(xué)生活動:看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.
強調(diào):要特別注意不等式基本性質(zhì)3.
實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當(dāng)進行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?
學(xué)生活動:思考、同桌討論.
歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).
①若 ,則 , ;
②若 ,且 ,則 , ;
③若 ,且 ,則 , .
師生活動:學(xué)生思考出答案,訂正,并強調(diào)不等式性質(zhì)3的應(yīng)用.
注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.
2.嘗試反饋,鞏固知識
請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.
例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
(1) (2) (3) (4)
學(xué)生活動:學(xué)生獨立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.
(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.
解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.
所以
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得
(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得
(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得
【教法說明】解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進行對比,并將原題與 或 對照,看用哪條性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.
例2? 設(shè) ,用“<”或“>”填空.
(1) (2) (3)
學(xué)生活動:在練習(xí)本上完成例2,由3個學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.
解:(1)因為 ,兩邊都減去3,由不等式性質(zhì)1,得
(2)因為 ,且2>0,由不等式性質(zhì)2,得
(3)因為 ,且-4<0,由不等式性質(zhì)3,得
活動:巡視輔導(dǎo),了解學(xué)生作題的實際情況,及時給予糾正或鼓勵.
注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時易出錯誤之處.
【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.
3.變式訓(xùn)練,培養(yǎng)能力
(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用a、b、c表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達能力,烘托學(xué)習(xí)氣氛.
答案:
① (a) ② (b)
③ (c) ④ (c)
⑤ (c) ⑥ (a)
【教法說明】做此練習(xí)題時,應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.
(2)單項選擇:
①由 得到 的條件是( )
a. b. c. d.
②由由 得到 的條件是( )
a. b. c. d.
③由 得到 的條件是( )
a. b. c. d. 是任意有理數(shù)
④若 ,則下列各式中錯誤的是( )
a. b. c. d.
師生活動:選出答案,學(xué)生判斷正誤并說明理由.
答案:①a ②d ③c ④d
(3)判斷正誤,正確的打“√”,錯誤的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,則? ∴,( )
學(xué)生活動:一名學(xué)生說出答案,其他學(xué)生判斷正誤.
答案:①√ ②× ③√ ④×
【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯,應(yīng)講清楚.
(四)總結(jié)、擴展
1.本節(jié)重點:
(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.
(2)能正確應(yīng)用性質(zhì)對不等式進行變形.
2.注意事項:
(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點.
(2)當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.
3.考點剖析:
不等式的基本性質(zhì)是歷屆中考中的重要考點,常見題型是選擇題和填空題.
(一)必做題:p61? a組4,5.
(二)選做題:p62? b組1,2,3.
參考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
設(shè)計
盒子里有紅、白、黑三種球,若白球的個數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個數(shù)最少是多少個?
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇六
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
2.靈活運用不等式的基本性質(zhì)進行不等式形.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生運用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.
(三)德育滲透點
培養(yǎng)學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
(四)美育滲透點
通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.
2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強化學(xué)生對知識的理解與掌握.
三、重點·難點·疑點及解決辦法
(一)重點
掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
(二)難點
正確應(yīng)用不等式的三條基本性質(zhì)進行不等式變形.
(三)疑點
弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點.
(四)解決辦法
講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.
四、課時安排
一課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).
2.通過教師的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).
3.通過教師的板書及學(xué)生的互動練習(xí),體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的教學(xué)模式能更好地對學(xué)生實施素質(zhì)教育.
七、教學(xué)步驟?
(-)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.
(二)整體感知
通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實際應(yīng)用某條性質(zhì)時應(yīng)注意的使用條件,同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進行比較:相同點為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個數(shù)或同一個整式.不同點是對于等式來說,在等式的兩邊乘以(或除以)同一個正數(shù)(或同一個負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個正數(shù)去乘(或除)不等式兩邊時,不等號方向不變;而在用同一個負(fù)數(shù)去乘(或除)不等式兩邊時,不等號要改變方向.這是在不等式變形時應(yīng)特別注意的地方.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
什么是等式?等式的基本性質(zhì)是什么?
學(xué)生活動:獨立思考,指名回答.
教師活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.
請同學(xué)們繼續(xù)觀察習(xí)題:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪題的不等號與7>4一致?
學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.
【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).
學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).
教師活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質(zhì),同時教師板書.
不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?
學(xué)生活動:觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.
【教法說明】觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?0呢?為什么?
師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時教師板書.
不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.
不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
師生活動:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.
學(xué)生活動:看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.
強調(diào):要特別注意不等式基本性質(zhì)3.
實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當(dāng)進行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?
學(xué)生活動:思考、同桌討論.
歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).
①若 ,則 , ;
②若 ,且 ,則 , ;
③若 ,且 ,則 , .
師生活動:學(xué)生思考出答案,教師訂正,并強調(diào)不等式性質(zhì)3的應(yīng)用.
注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.
2.嘗試反饋,鞏固知識
請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.
例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
(1) (2) (3) (4)
學(xué)生活動:學(xué)生獨立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.
教師板書(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.
解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.
所以
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得
(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得
(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得
【教法說明】解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進行對比,并將原題與 或 對照,看用哪條性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.
例2? 設(shè) ,用“<”或“>”填空.
(1) (2) (3)
學(xué)生活動:在練習(xí)本上完成例2,由3個學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.
解:(1)因為 ,兩邊都減去3,由不等式性質(zhì)1,得
(2)因為 ,且2>0,由不等式性質(zhì)2,得
(3)因為 ,且-4<0,由不等式性質(zhì)3,得
教師活動:巡視輔導(dǎo),了解學(xué)生作題的實際情況,及時給予糾正或鼓勵.
注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時易出錯誤之處.
【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.
3.變式訓(xùn)練,培養(yǎng)能力
(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用a、b、c表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達能力,烘托學(xué)習(xí)氣氛.
答案:
① (a) ② (b)
③ (c) ④ (c)
⑤ (c) ⑥ (a)
【教法說明】做此練習(xí)題時,應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.
(2)單項選擇:
①由 得到 的條件是( )
a. b. c. d.
②由由 得到 的條件是( )
a. b. c. d.
③由 得到 的條件是( )
a. b. c. d. 是任意有理數(shù)
④若 ,則下列各式中錯誤的是( )
a. b. c. d.
師生活動:教師選出答案,學(xué)生判斷正誤并說明理由.
答案:①a ②d ③c ④d
(3)判斷正誤,正確的打“√”,錯誤的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,則? ∴,( )
學(xué)生活動:一名學(xué)生說出答案,其他學(xué)生判斷正誤.
答案:①√ ②× ③√ ④×
【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯,教師應(yīng)講清楚.
(四)總結(jié)、擴展
1.本節(jié)重點:
(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.
(2)能正確應(yīng)用性質(zhì)對不等式進行變形.
2.注意事項:
(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點.
(2)當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.
3.考點剖析:
不等式的基本性質(zhì)是歷屆中考中的重要考點,常見題型是選擇題和填空題.
(一)必做題:p61? a組4,5.
(二)選做題:p62? b組1,2,3.
參考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
6.1? 不等式和它的基本性質(zhì)(二)
一、不等式的基本性質(zhì)
1.不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變.
若 ,則 , .
2.不等式兩邊都乘(或除以)同一個正數(shù),不等號方向不變,若 , ,則 .
3.不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變,若 , ,則 .
二、應(yīng)用
例1 解(1)(2)
(3)(4)
例2 解(1)(2)
(3)
三、小結(jié)
注意不等式性質(zhì)3的應(yīng)用.
盒子里有紅、白、黑三種球,若白球的個數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個數(shù)最少是多少個?
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇七
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
2.靈活運用不等式的基本性質(zhì)進行不等式形.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生運用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.
(三)德育滲透點
培養(yǎng)學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
(四)美育滲透點
通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.
2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強化學(xué)生對知識的理解與掌握.
三、重點·難點·疑點及解決辦法
(一)重點
掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
(二)難點
正確應(yīng)用不等式的三條基本性質(zhì)進行不等式變形.
(三)疑點
弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點.
(四)解決辦法
講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.
四、課時安排
一課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).
2.通過教師的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).
3.通過教師的板書及學(xué)生的互動練習(xí),體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的教學(xué)模式能更好地對學(xué)生實施素質(zhì)教育.
七、教學(xué)步驟?
(-)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.
(二)整體感知
通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實際應(yīng)用某條性質(zhì)時應(yīng)注意的使用條件,同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進行比較:相同點為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個數(shù)或同一個整式.不同點是對于等式來說,在等式的兩邊乘以(或除以)同一個正數(shù)(或同一個負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個正數(shù)去乘(或除)不等式兩邊時,不等號方向不變;而在用同一個負(fù)數(shù)去乘(或除)不等式兩邊時,不等號要改變方向.這是在不等式變形時應(yīng)特別注意的地方.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
什么是等式?等式的基本性質(zhì)是什么?
學(xué)生活動:獨立思考,指名回答.
教師活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.
請同學(xué)們繼續(xù)觀察習(xí)題:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪題的不等號與7>4一致?
學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.
【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).
學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).
教師活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質(zhì),同時教師板書.
不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?
學(xué)生活動:觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.
【教法說明】觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?0呢?為什么?
師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時教師板書.
不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.
不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
師生活動:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.
學(xué)生活動:看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.
強調(diào):要特別注意不等式基本性質(zhì)3.
實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當(dāng)進行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?
學(xué)生活動:思考、同桌討論.
歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).
①若 ,則 , ;
②若 ,且 ,則 , ;
③若 ,且 ,則 , .
師生活動:學(xué)生思考出答案,教師訂正,并強調(diào)不等式性質(zhì)3的應(yīng)用.
注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.
2.嘗試反饋,鞏固知識
請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.
例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
(1) (2) (3) (4)
學(xué)生活動:學(xué)生獨立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.
教師板書(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.
解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.
所以
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得
(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得
(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得
【教法說明】解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進行對比,并將原題與 或 對照,看用哪條性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.
例2? 設(shè) ,用“<”或“>”填空.
(1) (2) (3)
學(xué)生活動:在練習(xí)本上完成例2,由3個學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.
解:(1)因為 ,兩邊都減去3,由不等式性質(zhì)1,得
(2)因為 ,且2>0,由不等式性質(zhì)2,得
(3)因為 ,且-4<0,由不等式性質(zhì)3,得
教師活動:巡視輔導(dǎo),了解學(xué)生作題的實際情況,及時給予糾正或鼓勵.
注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時易出錯誤之處.
【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.
3.變式訓(xùn)練,培養(yǎng)能力
(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用a、b、c表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達能力,烘托學(xué)習(xí)氣氛.
答案:
① (a) ② (b)
③ (c) ④ (c)
⑤ (c) ⑥ (a)
【教法說明】做此練習(xí)題時,應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.
(2)單項選擇:
①由 得到 的條件是( )
a. b. c. d.
②由由 得到 的條件是( )
a. b. c. d.
③由 得到 的條件是( )
a. b. c. d. 是任意有理數(shù)
④若 ,則下列各式中錯誤的是( )
a. b. c. d.
師生活動:教師選出答案,學(xué)生判斷正誤并說明理由.
答案:①a ②d ③c ④d
(3)判斷正誤,正確的打“√”,錯誤的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,則? ∴,( )
學(xué)生活動:一名學(xué)生說出答案,其他學(xué)生判斷正誤.
答案:①√ ②× ③√ ④×
【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯,教師應(yīng)講清楚.
(四)總結(jié)、擴展
1.本節(jié)重點:
(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.
(2)能正確應(yīng)用性質(zhì)對不等式進行變形.
2.注意事項:
(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點.
(2)當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.
3.考點剖析:
不等式的基本性質(zhì)是歷屆中考中的重要考點,常見題型是選擇題和填空題.
(一)必做題:p61? a組4,5.
(二)選做題:p62? b組1,2,3.
參考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
6.1? 不等式和它的基本性質(zhì)(二)
一、不等式的基本性質(zhì)
1.不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變.
若 ,則 , .
2.不等式兩邊都乘(或除以)同一個正數(shù),不等號方向不變,若 , ,則 .
3.不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變,若 , ,則 .
二、應(yīng)用
例1 解(1)(2)
(3)(4)
例2 解(1)(2)
(3)
三、小結(jié)
注意不等式性質(zhì)3的應(yīng)用.
盒子里有紅、白、黑三種球,若白球的個數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個數(shù)最少是多少個?
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇八
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
2.靈活運用不等式的基本性質(zhì)進行不等式形.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生運用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.
(三)德育滲透點
培養(yǎng)學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
(四)美育滲透點
通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.
2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強化學(xué)生對知識的理解與掌握.
三、重點·難點·疑點及解決辦法
(一)重點
掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
(二)難點
正確應(yīng)用不等式的三條基本性質(zhì)進行不等式變形.
(三)疑點
弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點.
(四)解決辦法
講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.
四、課時安排
一課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).
2.通過教師的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).
3.通過教師的板書及學(xué)生的互動練習(xí),體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的教學(xué)模式能更好地對學(xué)生實施素質(zhì)教育.
七、教學(xué)步驟?
(-)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.
(二)整體感知
通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實際應(yīng)用某條性質(zhì)時應(yīng)注意的使用條件,同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進行比較:相同點為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個數(shù)或同一個整式.不同點是對于等式來說,在等式的兩邊乘以(或除以)同一個正數(shù)(或同一個負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個正數(shù)去乘(或除)不等式兩邊時,不等號方向不變;而在用同一個負(fù)數(shù)去乘(或除)不等式兩邊時,不等號要改變方向.這是在不等式變形時應(yīng)特別注意的地方.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
什么是等式?等式的基本性質(zhì)是什么?
學(xué)生活動:獨立思考,指名回答.
教師活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.
請同學(xué)們繼續(xù)觀察習(xí)題:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪題的不等號與7>4一致?
學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.
【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).
學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).
教師活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質(zhì),同時教師板書.
不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?
學(xué)生活動:觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.
【教法說明】觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?0呢?為什么?
師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時教師板書.
不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.
不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
師生活動:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.
學(xué)生活動:看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.
強調(diào):要特別注意不等式基本性質(zhì)3.
實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當(dāng)進行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?
學(xué)生活動:思考、同桌討論.
歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).
①若 ,則 , ;
②若 ,且 ,則 , ;
③若 ,且 ,則 , .
師生活動:學(xué)生思考出答案,教師訂正,并強調(diào)不等式性質(zhì)3的應(yīng)用.
注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.
2.嘗試反饋,鞏固知識
請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.
例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
(1) (2) (3) (4)
學(xué)生活動:學(xué)生獨立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.
教師板書(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.
解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.
所以
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得
(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得
(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得
【教法說明】解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進行對比,并將原題與 或 對照,看用哪條性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.
例2? 設(shè) ,用“<”或“>”填空.
(1) (2) (3)
學(xué)生活動:在練習(xí)本上完成例2,由3個學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.
解:(1)因為 ,兩邊都減去3,由不等式性質(zhì)1,得
(2)因為 ,且2>0,由不等式性質(zhì)2,得
(3)因為 ,且-4<0,由不等式性質(zhì)3,得
教師活動:巡視輔導(dǎo),了解學(xué)生作題的實際情況,及時給予糾正或鼓勵.
注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時易出錯誤之處.
【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.
3.變式訓(xùn)練,培養(yǎng)能力
(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用a、b、c表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達能力,烘托學(xué)習(xí)氣氛.
答案:
① (a) ② (b)
③ (c) ④ (c)
⑤ (c) ⑥ (a)
【教法說明】做此練習(xí)題時,應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.
(2)單項選擇:
①由 得到 的條件是( )
a. b. c. d.
②由由 得到 的條件是( )
a. b. c. d.
③由 得到 的條件是( )
a. b. c. d. 是任意有理數(shù)
④若 ,則下列各式中錯誤的是( )
a. b. c. d.
師生活動:教師選出答案,學(xué)生判斷正誤并說明理由.
答案:①a ②d ③c ④d
(3)判斷正誤,正確的打“√”,錯誤的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,則? ∴,( )
學(xué)生活動:一名學(xué)生說出答案,其他學(xué)生判斷正誤.
答案:①√ ②× ③√ ④×
【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯,教師應(yīng)講清楚.
(四)總結(jié)、擴展
1.本節(jié)重點:
(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.
(2)能正確應(yīng)用性質(zhì)對不等式進行變形.
2.注意事項:
(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點.
(2)當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.
3.考點剖析:
不等式的基本性質(zhì)是歷屆中考中的重要考點,常見題型是選擇題和填空題.
(一)必做題:p61? a組4,5.
(二)選做題:p62? b組1,2,3.
參考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
6.1? 不等式和它的基本性質(zhì)(二)
一、不等式的基本性質(zhì)
1.不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變.
若 ,則 , .
2.不等式兩邊都乘(或除以)同一個正數(shù),不等號方向不變,若 , ,則 .
3.不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號方向改變,若 , ,則 .
二、應(yīng)用
例1 解(1)(2)
(3)(4)
例2 解(1)(2)
(3)
三、小結(jié)
注意不等式性質(zhì)3的應(yīng)用.
盒子里有紅、白、黑三種球,若白球的個數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個數(shù)最少是多少個?
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇九
一、素質(zhì)目標(biāo)
(一)知識點
1.使學(xué)生理解掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
2.靈活運用不等式的基本性質(zhì)進行不等式形.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生運用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.
(三)德育滲透點
培養(yǎng)學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
(四)美育滲透點
通過不等式基本性質(zhì)的學(xué)習(xí),滲透不等式所具有的內(nèi)在同解變形的數(shù)學(xué)美,激發(fā)學(xué)生探究數(shù)學(xué)美的興趣與激情,從而陶治學(xué)生的數(shù)學(xué)情操。
二、學(xué)法引導(dǎo)
1.方法:觀察法、探究法、嘗試指導(dǎo)法、討論法.
2.學(xué)生學(xué)法:通過觀察、分析、討論,引導(dǎo)學(xué)生歸納小結(jié)出不等式的三條基本性質(zhì),從具體下升到理論,再由理論指導(dǎo)具體的練習(xí),從而強化學(xué)生對知識的理解與掌握.
三、重點·難點·疑點及解決辦法
(一)重點
掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
(二)難點
正確應(yīng)用不等式的三條基本性質(zhì)進行不等式變形.
(三)疑點
弄不清“不等號方向不變”與“所得結(jié)果仍是不等式”之間的關(guān)系是學(xué)生學(xué)習(xí)的疑點.
(四)解決辦法
講清“不等式的基本性質(zhì)”與“等式的基本性質(zhì)”之間的區(qū)別與聯(lián)系是教好本節(jié)內(nèi)容的關(guān)鍵.
四、課時安排
一課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計的一組比較大小問題,讓學(xué)生觀察并歸納出不等式的三條基本性質(zhì).
2.通過的講解及學(xué)生的質(zhì)疑,讓學(xué)生在與等式性質(zhì)的對比中更加深入、準(zhǔn)確地理解不等式的三條基本性質(zhì).
3.通過的及學(xué)生的互動練習(xí),體現(xiàn)出以學(xué)生為主體,為主導(dǎo)的模式能更好地對學(xué)生實施素質(zhì).
七、步驟
(-)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)不等式的三條基本性質(zhì)并能熟練地加以應(yīng)用.
(二)整體感知
通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),再反復(fù)比較三條性質(zhì)的異同,從而尋找出在實際應(yīng)用某條性質(zhì)時應(yīng)注意的使用條件,同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)1、2進行比較:相同點為不管是對等式還是不等式,都可以在它的兩邊同加(或減)同一個數(shù)或同一個整式.不同點是對于等式來說,在等式的兩邊乘以(或除以)同一個正數(shù)(或同一個負(fù)數(shù))的情況下等式仍然對立.但對于不等式來說,卻不一樣,在用同一個正數(shù)去乘(或除)不等式兩邊時,不等號方向不變;而在用同一個負(fù)數(shù)去乘(或除)不等式兩邊時,不等號要改變方向.這是在不等式變形時應(yīng)特別注意的地方.
(三)過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
什么是等式?等式的基本性質(zhì)是什么?
學(xué)生活動:獨立思考,指名回答.
活動:注意強調(diào)等式兩邊都乘以或除以(除數(shù)不為0)同一個數(shù),所得結(jié)果仍是等式.
請同學(xué)們繼續(xù)觀察習(xí)題:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪題的不等號與7>4一致?
學(xué)生活動:觀察思考,兩個(或幾個)學(xué)生回答問題,由其他學(xué)生判斷正誤.
【教法說明】設(shè)置上述習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
不等式有哪些基本性質(zhì)呢?研究時要與等式的性質(zhì)進行對比,大家知道,等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式(實質(zhì)是移項法則),請同學(xué)們觀察①②題,并猜想出不等式的性質(zhì).
學(xué)生活動:觀察思考,猜想出不等式的性質(zhì).
活動:及時糾正學(xué)生敘述中出現(xiàn)的問題,特別強調(diào)指出:“仍是不等式”包括兩種情況,說法不確切,一定要改為“不等號的方向不變或者不等號的方向改變.”
師生活動:師生共同敘述不等式的性質(zhì),同時.
不等式基本性質(zhì)1? 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變.
對比等式兩邊都乘(或除以)同一個數(shù)的性質(zhì)(強調(diào)所乘的數(shù)可正、可負(fù)、也可為0)請大家思考,不等式類似的性質(zhì)會怎樣?
學(xué)生活動:觀察③④題,并將題中的3換成5,-3換成一5,按題的要求再做一遍,并猜想討論出結(jié)論.
【教法說明】觀察時,引導(dǎo)學(xué)生注意不等號的方向,用彩色粉筆標(biāo)出來,并設(shè)疑“原因何在?”兩邊都乘(或除以)同一個負(fù)數(shù)呢?0呢?為什么?
師生活動:由學(xué)生概括總結(jié)不等式的其他性質(zhì),同時.
不等式基本性質(zhì)2? 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變.
不等式基本性質(zhì)3? 不等式兩邊都乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
師生活動:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進一步驗證上面得出的三條結(jié)論.
學(xué)生活動:看課本第57~58頁有關(guān)不等式性質(zhì)的敘述,理解字句并默記.
強調(diào):要特別注意不等式基本性質(zhì)3.
實質(zhì):不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進行“+”、“-”、“×”、“÷”四則運算,當(dāng)進行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
不等式的基本性質(zhì)與等式的基本性質(zhì)有哪些區(qū)別、聯(lián)系?
學(xué)生活動:思考、同桌討論.
歸納:只有乘(或除以)負(fù)數(shù)時不同,此外都類似.下面嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì).
①若 ,則 , ;
②若 ,且 ,則 , ;
③若 ,且 ,則 , .
師生活動:學(xué)生思考出答案,訂正,并強調(diào)不等式性質(zhì)3的應(yīng)用.
注意:不等式除了上述性質(zhì)外,還有以下性質(zhì):①若 ,則 .②若 ,且 ,則 ,這些先不要向?qū)W生說明.
2.嘗試反饋,鞏固知識
請學(xué)生先根據(jù)自己的理解,解答下面習(xí)題.
例1? 根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
(1) (2) (3) (4)
學(xué)生活動:學(xué)生獨立思考完成,然后一個(或幾個)學(xué)生回答結(jié)果.
(1)(2)題解題過程.(3)(4)題由學(xué)生在練習(xí)本上完成,指定兩個學(xué)生板演,然后師生共同判斷板演是否正確.
解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上2,不等號的方向不變.
所以
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去 ,得
(3)根據(jù)不等式基本性質(zhì)2,兩邊都乘以2,得
(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4得
【教法說明】解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進行對比,并將原題與 或 對照,看用哪條性質(zhì)能達到題目要求,要強調(diào)每步的理論依據(jù),尤其要注意不等式基本性質(zhì)3與基本性質(zhì)2的區(qū)別,解題時書寫要規(guī)范.
例2? 設(shè) ,用“<”或“>”填空.
(1) (2) (3)
學(xué)生活動:在練習(xí)本上完成例2,由3個學(xué)生板演完成后,其他學(xué)生判斷板演是否正確,最后與書中正確解題格式對照.
解:(1)因為 ,兩邊都減去3,由不等式性質(zhì)1,得
(2)因為 ,且2>0,由不等式性質(zhì)2,得
(3)因為 ,且-4<0,由不等式性質(zhì)3,得
活動:巡視輔導(dǎo),了解學(xué)生作題的實際情況,及時給予糾正或鼓勵.
注意問題:例2(3)是根據(jù)不等式性質(zhì)3,不等號方向應(yīng)改變.這是學(xué)生做題時易出錯誤之處.
【教法說明】要讓學(xué)生明白推理要有依據(jù),以后作類似的練習(xí)時,都寫出根據(jù),逐步培養(yǎng)學(xué)生的邏輯思維能力.
3.變式訓(xùn)練,培養(yǎng)能力
(1)用“>”或“<”在橫線上填空,并在題后括號內(nèi)填寫理由.(不等式基本性質(zhì)1,2,3分別用a、b、c表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,目的是訓(xùn)練學(xué)生思維能力,表達能力,烘托學(xué)習(xí)氣氛.
答案:
① (a) ② (b)
③ (c) ④ (c)
⑤ (c) ⑥ (a)
【教法說明】做此練習(xí)題時,應(yīng)啟發(fā)學(xué)生將所做習(xí)題與題中已知條件進行對比,觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.
(2)單項選擇:
①由 得到 的條件是( )
a. b. c. d.
②由由 得到 的條件是( )
a. b. c. d.
③由 得到 的條件是( )
a. b. c. d. 是任意有理數(shù)
④若 ,則下列各式中錯誤的是( )
a. b. c. d.
師生活動:選出答案,學(xué)生判斷正誤并說明理由.
答案:①a ②d ③c ④d
(3)判斷正誤,正確的打“√”,錯誤的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,則? ∴,( )
學(xué)生活動:一名學(xué)生說出答案,其他學(xué)生判斷正誤.
答案:①√ ②× ③√ ④×
【教法說明】以多種形式處理習(xí)題可以激發(fā)學(xué)生學(xué)習(xí)熱情,提高課堂效率;(2)練習(xí)第③④題易出錯,應(yīng)講清楚.
(四)總結(jié)、擴展
1.本節(jié)重點:
(1)掌握不等式的三條基本性質(zhì),尤其是性質(zhì)3.
(2)能正確應(yīng)用性質(zhì)對不等式進行變形.
2.注意事項:
(1)要反復(fù)對比不等式性質(zhì)與等式性質(zhì)的異同點.
(2)當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),對于未給定范圍的字母,應(yīng)分情況討論.
3.考點剖析:
不等式的基本性質(zhì)是歷屆中考中的重要考點,常見題型是選擇題和填空題.
(一)必做題:p61? a組4,5.
(二)選做題:p62? b組1,2,3.
參考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
設(shè)計
盒子里有紅、白、黑三種球,若白球的個數(shù)不少于黑球的一半,且不多于紅球的 ,又白球和黑球的和至少是55,問盒中紅球的個數(shù)最少是多少個?
不等式和它的基本性質(zhì)教案初中 不等式和它的基本性質(zhì)的教學(xué)過程篇十
本節(jié)教學(xué)的重點是不等式的三條基本性質(zhì).難點是不等式的基本性質(zhì)3.掌握不等式的三條基本性質(zhì)是進一步學(xué)習(xí)一元一次不等式(組)的解法等后續(xù)知識的基礎(chǔ).
1.不等式的概念
用不等號(“<”、“>”或“≠”表示不等關(guān)系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)結(jié)合起來,讀作“大于或等于”,或記作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”結(jié)合起來,讀作“小于或等于”,或記作“≯”,也就是“不大于”)等等,也都是不等式.
2.當(dāng)不等式的兩邊都加上或乘以同一個正數(shù)或負(fù)數(shù)時,所得結(jié)果仍是不等式.但變形所得的不等式中不等號的方向,有的與原不等式中不等號的方向相同,有的則不相同.因而敘述時不能籠統(tǒng)說成“……仍是不等式”,而應(yīng)明確變形所得的不等式中不等號的方向.
3.不等式成立與不等式不成立的意義
例如:在不等式 中,字母 表示未知數(shù).當(dāng) 取某一數(shù)值 時, 的值小于2,我們就說當(dāng) 時,不等式 成立;當(dāng) 取另外某一個數(shù)值 時, 的值不小于2,我們就說當(dāng) 時, 不等式不成立.
4.不等式的三條基本性質(zhì)是不等式變形的重要依據(jù),性質(zhì)1、2類似等式性質(zhì),不等號的方向不改變,性質(zhì)3不等號的方向改變,這是不等式獨有的性質(zhì),也是初學(xué)者易錯的地方,因此要特別注意.
(-)知識教學(xué)點
1.了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生運用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運用所學(xué)知識解決實際問題的能力.
(三)德育滲透點
通過引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識,競爭意識.
(四)美育滲透點
通過不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
1.教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
2.學(xué)生學(xué)法:只有準(zhǔn)確理解不等號的幾種形式的意義,才能在實際中進行靈活的運用.
(一)重點
掌握不等式是否成立的判定方法;依題意列出正確的不等式.
(二)難點
依題意列出正確的不等式
(三)疑點
如何把題目中表示不等關(guān)系的詞語準(zhǔn)確地翻譯成相應(yīng)的數(shù)學(xué)符號.
(四)解決方法
在正確理解不等號的意義后,通過抓住體現(xiàn)不等量的關(guān)系的詞語就能準(zhǔn)確列出相應(yīng)的不等式.
一課時.
投影儀或電腦、自制膠片.
1.創(chuàng)設(shè)情境,通過復(fù)習(xí)有關(guān)等式的知識,自然導(dǎo)入??新課的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)熱情.
2.從演示的有關(guān)實驗中,探究相應(yīng)的不等量關(guān)系,從學(xué)生的討論、分析中探究代數(shù)式的不等關(guān)系的幾種常見形式.
3.從師生的互動講解練習(xí)中掌握不等式的有關(guān)知識,并培養(yǎng)學(xué)生具有一定的靈活應(yīng)用能力.
(一)明確目標(biāo)
本節(jié)課主要學(xué)習(xí)依題意正確迅速地列出不等式.
(二)整體感知
通過復(fù)習(xí)等式創(chuàng)設(shè)情境,自然過渡到不等式的學(xué)習(xí)過程中,又通過細(xì)心的分析、審題尋找出正確的不等量關(guān)系,從而列出正確的不等式.
(三)教學(xué)過程?
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入??
我們已經(jīng)學(xué)過等式和它的基本性質(zhì),請同學(xué)們觀察下面習(xí)題,思考并回答:
(1)什么是等式?等式中“=”兩側(cè)的代數(shù)式能否交換?“=”是否具有方向性?
(2)已知數(shù)值:-5, ,3,0,2,7,判斷:上述數(shù)值哪些使等式 成立?哪些使等式 不成立?
學(xué)生活動:首先自己思考,然后指名回答.
教師釋疑:①“=”表示相等關(guān)系,它沒有方向性,等號兩例可以相互交換,有時不交換只是因為書寫習(xí)慣,例如方程的解 .
②判斷數(shù)取何值,等式 成立和不成立實質(zhì)上是在判斷給定的數(shù)值是否為方程 的解,因為等式 為一元一次方程,它只有惟一解 ,所以等式 只有在 時成立,此外,均不成立.
【教法說明】設(shè)置上述習(xí)題,目的是使學(xué)生溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.
2.探索新知,講授新課
不等式和等式既有聯(lián)系,又有區(qū)別,大家在學(xué)習(xí)時要自覺進行對比,請觀察演示實驗并回答:演示說明什么問題?
師生活動:教師演示課本第54頁天平稱物重的兩個實例(同時指出演示中物重為 克,每個砝碼重量均為1克),學(xué)生觀察實驗,思考后回答:演示中天平若不平衡說明天平兩邊所放物體的重量不相等.
【教法說明】結(jié)合實際生活中同類量之間具有一種不相等關(guān)系的實例引入不等式的知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣.
在實際生活中,像演示這樣同類量之間具有不相等關(guān)系的例子是大量的、普遍的,這種關(guān)系需用不等式來表示.那么什么是不等式呢?請看:
, ,
, ,
提問:(l)上述式子中有哪些表示數(shù)量關(guān)系的符號?(2)這些符號表示什么關(guān)系?(3)這些符號兩側(cè)的代數(shù)式可以隨意交換位置嗎?(4)什么叫不等式?
學(xué)生活動:觀察式予,思考并回答問題.
答案:(1)分別使用“<”“>”“≠”.(2)表示不等關(guān)系.(3)不可以隨意互換位置.(4)用不等號表示不等關(guān)系的式子叫不等式.
不等號除了“<”“>”“≠”之外,還有無其他形式?
學(xué)生活動:同桌討論,嘗試得到結(jié)論.
教師釋疑:①不等號除“<”“>”“≠”外,還有“≥”“≤”兩種形式(“≥”是指“>”與“=”結(jié)合起來,讀作“大于或等于”,也可理解成“不小于”;同理“≤”讀作“小于或等于”,也可理解成“不大于”.)現(xiàn)在,我們來研究用“>”“<”表示的不等式.
②不等號“>”“<”表示不等關(guān)系,它們具有方向性,因而不等號兩側(cè)不可互交換,例如 ,不能寫成 .
【教法說明】①通過學(xué)生自己觀察思考,進而猜測出不等式的意義,這種教法充分發(fā)揮了學(xué)生的主體作用.
②通過教師釋疑,學(xué)生對不等號的種類及其使用有了進一步的了解.
3.嘗試反饋,鞏固知識
同類量之間的大小關(guān)系常用“>”“<”來表示,請同學(xué)們根據(jù)自己對不等式的理解,解答習(xí)題.
(1)用“<”或“>”境空.(搶答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正數(shù);② 是負(fù)數(shù);③ 與3的和小于6;④ 與2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)學(xué)生獨立完成課本第55頁例1.
注意:不是所有同類量都可以比較大小,例如不在同一直線上的兩個力,它們只有等與不等關(guān)系,而無大小關(guān)系,這一點無需向?qū)W生說明.
學(xué)生活動:第(l)題搶答;第(2)題在練習(xí)本上完成,由兩個學(xué)生板演,完成之后,由學(xué)生判斷板演是否正確
教師活動:巡視輔導(dǎo),統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
【教法說明】①第(1)題是為了調(diào)動積極性,強化競爭意識;第(2)題則是為了訓(xùn)練學(xué)生書面表述能力.
②教學(xué)時要注意引導(dǎo)學(xué)生將題目中表示不等關(guān)系的詞語翻譯成相應(yīng)的不等號,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,請同學(xué)們嘗試解答習(xí)題:
已知數(shù)值;-5, ,3,0,2,-2.5,5.2;
(1)判斷:上述數(shù)值哪些使不等式 成立?哪些使 不成立?
(2)說出幾個使不等式 成立的 的數(shù)值;說出幾個使 不成立的 數(shù)值.
學(xué)生活動:同桌研究討論,嘗試得到答案.
教師活動:引導(dǎo)學(xué)生回答,使未知數(shù) 的取值不僅有正整數(shù),還有負(fù)數(shù)、零、小數(shù).
師生總結(jié):判定不等式是否成立的方法就是:如果不等號兩側(cè)數(shù)值的大小關(guān)系與不等另一致,稱不等式成立;否則不成立.例如對于 ;當(dāng) 時, 的值小于6,就說 時不等式 成立;當(dāng) 時, 的值不小于6,就說 時, 不成立.
【教法說明】通過學(xué)生自己舉例,培養(yǎng)他們運用已有的知識探索新知識的意識,同時也活躍了課堂氣氛.
4.變式訓(xùn)練,培養(yǎng)能力
(1)當(dāng) 取下列數(shù)值時,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 與3的和小于等于(不大于)6;
②寫出使上述不等式成立的幾個 的數(shù)值;
③ 取何值時,不等式 總成立?取何值時不成立?
學(xué)生在練習(xí)本上完成1題,2題,同桌訂正;教師抽查,強調(diào)注意事項.
【教法說明】
①使學(xué)生進一步了解使不等式成立的未知數(shù)的值可以有多個,為6.2講解不等式的解集做準(zhǔn)備.
②強化思維能力和歸納總結(jié)能力.
(四)總結(jié)、擴展
學(xué)生小結(jié),師生共同完善:
本節(jié)課的重點內(nèi)容:1.掌握不等式是否成立的判斷方法;2.依題意列出正確的不等式.
注意:列不等式時,要注意把表示不等關(guān)系的詞語用相慶的不等號來表示.例如“不大于”用“≤”表示,而不用“<”表示,這一點學(xué)生容易出現(xiàn)錯誤.
(一)必做題:p61? a組1,2,3.
(二)選做題:
1.單項選擇
(1)絕對值小于3的非負(fù)整數(shù)有( )
a.1,2 b.0,1 c.0,1,2 d.0,1,3
(2)下列選項中,正確的是( )
a. 不是負(fù)數(shù),則
b. 是大于0的數(shù),則
c. 不小于-1,則
d. 是負(fù)數(shù),則
2.依題意列不等式
(1) 的3倍與7的差是非正數(shù)
(2) 與6的和大于9且小于12
(3)a市某天的最低氣溫是-5℃,最高氣溫是10℃,設(shè)這天氣溫為 ℃,則 滿足的條件是____________________.
【設(shè)計說明】1.再現(xiàn)本節(jié)重點,鞏固所學(xué)知識.
2.有層次性地布置作業(yè)?,可以調(diào)動全體學(xué)生的學(xué)習(xí)積極性,這也是實施素質(zhì)教育的具體體現(xiàn).
參考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)c (2)d
2.(1) (2) (3)
6.1? 不等式和它的基本性質(zhì)(一)
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等關(guān)系的式子叫不等式.
重點研究“>”“<”
二、依題意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式 能否成立
時, (√); 時, (×);
時, (×)
四、歸納總結(jié)重點
(一)依題意列不等式.
(二)會判斷不等式是否成立.
費? 馬? 數(shù)
費馬( fermat)是17世紀(jì)法國著名數(shù)學(xué)家,是法國南部土魯斯議會的議員,他在數(shù)論、解析幾何、概率論三個方面都有重要貢獻.他無意發(fā)表自己的著作,平生沒有完整的著作問世.去世后,人們才把他寫在書頁空白處和給朋友的書信中,以及一些陳舊手稿中的論述收集匯編成書.費馬特別愛好數(shù)論,在這方面有好幾項成就,如費馬數(shù)、費馬小定理、費馬大定理等.
費馬于1640年前后,在驗算了形如
的數(shù)當(dāng) 的值分別為
3,5,17,257,65537
后(請注意這些數(shù)均為質(zhì)數(shù))便宣稱:對于為任何自然數(shù),是質(zhì)數(shù).
大約過了100年,1732年數(shù)學(xué)家歐拉()指出
.
從而否定了費馬的上述結(jié)論(猜想).
爾后,人們又對 進行了大量研究,發(fā)現(xiàn)在 中,除了上述五個質(zhì)數(shù)外,人們尚未再發(fā)現(xiàn)新的質(zhì)數(shù).
雖然費馬的這個猜想是錯誤的,但為了紀(jì)念這位數(shù)學(xué)家,人們?nèi)园堰@種形式的數(shù)叫做費馬數(shù).