每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學(xué)數(shù)學(xué)記憶口訣篇一
同號兩數(shù)來相加,絕對值加不變號。異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好?!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。
2、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。有理數(shù)的乘法運(yùn)算符號法則
同號得正異號負(fù),一項(xiàng)為零積是零。
3、合并同類項(xiàng)
說起合并同類項(xiàng),法則千萬不能忘。只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
4、去、添括號法則
去括號或添括號,關(guān)鍵要看連接號。擴(kuò)號前面是正號,去添括號不變號。
括號前面是負(fù)號,去添括號都變號。
5、解方程
已知未知鬧分離,分離要靠移完成。移加變減減變加,移乘變除除變乘。
6、平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。積化和差變兩項(xiàng),完全平方不是它。
7、完全平方公式
二數(shù)和或差平方,展開式它共三項(xiàng)。首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
8、完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先減后加差平方。
9、解一元一次方程
先去分母再括號,移項(xiàng)變號要記牢。同類各項(xiàng)去合并,系數(shù)化“1”還沒好。
求得未知須檢驗(yàn),回代值等才算了。
10、解一元一次方程
先去分母再括號,移項(xiàng)合并同類項(xiàng)。系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。
11、因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算。積化和差是分解,因式分解非運(yùn)算。
12、因式分解
兩式平方符號異,因式分解你別怕。兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負(fù)號。同正則正負(fù)就負(fù),異則需添冪符號。
13、因式分解
一提二套三分組,十字相乘也上數(shù)。四種方法都不行,拆項(xiàng)添項(xiàng)去重組。
重組無望試求根,換元或者算余數(shù)。多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
注:一提(提公因式)二套(套公式)
14、因式分解
一提二套三分組,叉乘求根也上數(shù)。五種方法都不行,拆項(xiàng)添項(xiàng)去重組。
對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項(xiàng)式的因式分解
先想完全平方式,十字相乘是其次。兩種方法行不通,求根分解去嘗試。
15、比和比例
兩數(shù)相除也叫比,兩比相等叫比例。外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。同時交換內(nèi)外項(xiàng),便要稱其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
16、解比例
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。
17、求比值
由已知去求比值,多種途徑可利用?;钣帽壤咝再|(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
18、正比例與反比例
商定變量成正比,積定變量成反比。
19、正比例與反比例
變化過程商一定,兩個變量成正比。變化過程積一定,兩個變量成反比。
20、判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。兩端積等中間積,四數(shù)一定成比例。
21、判斷四式成比例
四式是否成比例,生或降冪先排序。兩端積等中間積,四式便可成比例。
22、比例中項(xiàng)
成比例的四項(xiàng)中,外項(xiàng)相同會遇到。有時內(nèi)項(xiàng)會相同,比例中項(xiàng)少不了。
比例中項(xiàng)很重要,多種場合會碰到。成比例的四項(xiàng)中,外項(xiàng)相同有不少。
有時內(nèi)項(xiàng)會相同,比例中項(xiàng)出現(xiàn)了。同數(shù)平方等異積,比例中項(xiàng)無處逃。
23、根式與無理式
表示方根代數(shù)式,都可稱其為根式。根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。無理式都是根式,區(qū)分它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
24、求定義域
求定義域有講究,四項(xiàng)原則須留意。負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項(xiàng)原則須注意。負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。限制條件不唯一,不等式組求解集。
25、解一元一次不等式
先去分母再括號,移項(xiàng)合并同類項(xiàng)。系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號,移項(xiàng)別忘要變號。同類各項(xiàng)去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負(fù)也變號。
26、解一元一次不等式組
大于頭來小于尾,大小不一中間找。大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對取較小)敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)
27、解一元二次不等式
首先化成一般式,構(gòu)造函數(shù)第二站。判別式值若非負(fù),曲線橫軸有交點(diǎn)。
a正開口它向上,大于零則取兩邊。代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。
方程若無實(shí)數(shù)根,口上大零解為全。小于零將沒有解,開口向下正相反。
28、用平方差公式因式分解
異號兩個平方項(xiàng),因式分解有辦法。兩底和乘兩底差,分解結(jié)果就是它。
29、用完全平方公式因式分解
兩平方項(xiàng)在兩端,底積2倍在中部。同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。兩邊若負(fù)中間正,底差平方相反數(shù)。
30、用公式法解一元二次方程
要用公式解方程,首先化成一般式。調(diào)整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。判別式值與零比,有無實(shí)根便得知。
有實(shí)根可套公式,沒有實(shí)根要告之。
31、用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。該種解法叫配方,解方程時多練習(xí)。
32、用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
注:恒等式
33、解一元二次方程
方程沒有一次項(xiàng),直接開方最理想。如果缺少常數(shù)項(xiàng),因式分解沒商量。
b、c相等都為零,等根是零不要忘。b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方。
34、正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。正比例函數(shù)是否,辨別需分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實(shí)數(shù)都需要。區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
35、正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。k正一三負(fù)二四,變化趨勢記心間。
k正左低右邊高,同大同小向爬山。k負(fù)左高右邊低,一大另小下山巒。
36、一次函數(shù)
一次函數(shù)圖直線,經(jīng)過點(diǎn)。k正左低右邊高,越走越高向爬山。
k負(fù)左高右邊低,越來越低很明顯。k稱斜率b截距,截距為零變正函。
37、反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過點(diǎn)。k正一三負(fù)二四,兩軸是它漸近線。
k正左高右邊低,一三象限滑下山。k負(fù)左低右邊高,二四象限如爬山。
38、二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)。全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調(diào)正相反。a定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。如果要畫拋物線,平移也可去描點(diǎn),
提取配方定頂點(diǎn),兩條途徑再挑選。列表描點(diǎn)后連線,平移規(guī)律記心間。
左加右減括號內(nèi),號外上加下要減。二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。a定開口及大小,開口向上是正數(shù)。
絕對值大開口小,開口向下a負(fù)數(shù)。拋物線有對稱軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。如果要畫拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。
注:基礎(chǔ)拋物線
39、直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。直線長短不確定,可向兩方無限延。
射線僅有一端點(diǎn),反向延長成直線。線段定長兩端點(diǎn),雙向延伸變直線。
兩點(diǎn)定線是共性,組成圖形最常見。
40、角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。和為直角叫互余,互為補(bǔ)角和平角。
41、證等積或比例線段
等積或比例線段,多種途徑可以證。證等積要改等比,對照圖形看特征。
共點(diǎn)共線線相交,平行截比把題證。三點(diǎn)定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。換后結(jié)論能成立,原來命題即得證。
實(shí)在不行用面積,射影角分線也成。只要學(xué)習(xí)肯登攀,手腦并用無不勝。
42、解無理方程
一無一有各一邊,兩無也要放兩邊。乘方根號無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對難,兩次乘方也好辦。特殊情況去換元,得解驗(yàn)根是必然。
43、解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。特殊情況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別含糊。
44、列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時守章法。檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。
45、兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。與軸等距兩個點(diǎn),間距求法亦如此。
平面任意兩個點(diǎn),橫縱標(biāo)差先求值。差方相加開平方,距離公式要牢記。
46、矩形的判定
任意一個四邊形,三個直角成矩形;對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;兩對角線若相等,理所當(dāng)然為矩形。
47、菱形的判定
任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形。
<
小學(xué)數(shù)學(xué)記憶口訣篇二
有理數(shù)的加法運(yùn)算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。
合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。
恒等變換:兩個數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式:平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項(xiàng)符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開)方,三級運(yùn)算分得清,系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號,移項(xiàng)時候要變號,同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時,不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;x軸上y為0,x為0在y軸。
象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行x軸,縱坐標(biāo)相等橫不同;直線平行于y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對稱點(diǎn)坐標(biāo):對稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,x軸對稱y相反,y軸對稱,x前面添負(fù)號;原點(diǎn)對稱最好記,橫縱坐標(biāo)變符號。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c與y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點(diǎn)位置先找見,y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:
正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補(bǔ)記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
小學(xué)數(shù)學(xué)記憶口訣篇三
最簡根式的條件:
最簡根式三條件,
號內(nèi)不把分母含,
冪指(數(shù))根指(數(shù))要互質(zhì),
冪指比根指小一點(diǎn)。
特殊點(diǎn)的坐標(biāo)特征:
坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;
(+,+),(-,+),(-,-)和(+,-),四個象限分前后;
x軸上y為0,x為0在y軸。
象限角的平分線:
象限角的平分線,
坐標(biāo)特征有特點(diǎn),
一、三橫縱都相等,
二、四橫縱確相反。
平行某軸的直線:
平行某軸的直線,
點(diǎn)的坐標(biāo)有講究,
直線平行x軸,縱坐標(biāo)相等橫不同;
直線平行于y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對稱點(diǎn)的坐標(biāo):
對稱點(diǎn)坐標(biāo)要記牢,
相反數(shù)位置莫混淆,
x軸對稱y相反,
y軸對稱,x前面添負(fù)號;
原點(diǎn)對稱最好記,
橫縱坐標(biāo)變符號。
自變量的取值范圍:
分式分母不為零,
偶次根下負(fù)不行;
零次冪底數(shù)不為零,
整式、奇次根全能行。
函數(shù)圖象的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b,二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則可用下面的口訣
左右平移在括號,
上下平移在末稍,
左正右負(fù)須牢記,
上正下負(fù)錯不了。
一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);
開口、大小由a斷,c與y軸來相見,
b的符號較特別,符號與a相關(guān)聯(lián);
頂點(diǎn)位置先找見,y軸作為參考線,
左同右異中為0,牢記心中莫混亂;
頂點(diǎn)坐標(biāo)最重要,一般 式配方它就現(xiàn),
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。
若求對稱軸位置,符號反,
一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點(diǎn),雙曲線相背離得遠(yuǎn);
k為正,圖在一、三(象)限,
k為負(fù),圖在二、四(象)限;
圖在一、三函數(shù)減,兩個分支分別減。
圖在二、四正相反,兩個分支分別增;
線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是直角三角形的邊的比值,可以把兩個字用/隔開,再用下面的.
一句話記定義:
一位不高明的廚子教徒弟殺魚,說了這么一句話:“正對魚磷(余鄰)直刀切。
”正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊.
三角函數(shù)的增減性:正增余減
特殊三角函數(shù)值記憶:
首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
平行四邊形的判定:
要證平行四邊形,兩個條件才能行
,一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現(xiàn);
延長兩腰交一點(diǎn),“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
添加輔助線歌:
輔助線,怎么添?
找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連,三角形兩邊中點(diǎn),連接則成中位線;
三角形中有中線,延長中線翻一番。
圓的證明歌:
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),
圓周、圓心、弦切角,細(xì)找關(guān)系把線連;
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內(nèi)接四邊形,對角互補(bǔ)記心間,
外角等于內(nèi)對角,四邊形定內(nèi)接圓;
直角相對或共弦,試試加 個輔助圓;
若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點(diǎn),證垂直來半徑連,
直線與圓未給點(diǎn),需證半徑作垂線;
四邊形 有內(nèi)切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關(guān)鍵,
兩圓相切作公切,兩圓相交連公弦。
圓中比例線段:
遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
正多邊形訣竅歌:
份相等分割圓,n值必須大于三,
依次連接各分點(diǎn),內(nèi)接正n邊形在眼前。
經(jīng)過分點(diǎn)做切線,切線相交n個點(diǎn)。
n個交點(diǎn)做頂點(diǎn),外切正n邊形便出現(xiàn)。
正n邊形很美觀,它有內(nèi)接、外切圓,
內(nèi)接、外切都唯一,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸 都過圓心點(diǎn),
如果n值為偶數(shù),中心對稱很方便。
正n邊形做計算,邊心距、半徑是關(guān)鍵,
內(nèi)切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個整,依此計算便簡單。
函數(shù)學(xué)習(xí)口決:
正比例函數(shù)是直線,圖象一定過原點(diǎn),
k的正負(fù)是關(guān)鍵,決定直線的象限,
負(fù)k經(jīng)過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個限,
兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個點(diǎn),
正k落在一三限,x增大y在減,
圖象上面任意點(diǎn),矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點(diǎn),
a的正負(fù)開口判,c的大小y軸看,
△的符號最簡便,x軸上數(shù)交點(diǎn),
a、b同號軸左邊,拋物線平移a不變,
頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,
配方法作用最關(guān)鍵。