作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的教案嗎?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
人教版數(shù)學(xué)必修教學(xué)設(shè)計及反思必修三數(shù)學(xué)教案設(shè)計篇一
教學(xué)目標(biāo)
1、 知識與技能
(1)進一步理解表達式y(tǒng)=asin(ωx+φ),掌握a、φ、ωx+φ的含義;(2)熟練掌握由 的圖象得到函數(shù) 的圖象的方法;(3)會由函數(shù)y=asin(ωx+φ)的圖像討論其性質(zhì);(4)能解決一些綜合性的問題。
2、 過程與方法
通過具體例題和學(xué)生練習(xí),使學(xué)生能正確作出函數(shù)y=asin(ωx+φ)的圖像;并根據(jù)圖像求解關(guān)系性質(zhì)的問題;講解例題,總結(jié)方法,鞏固練習(xí)。
3、 情感態(tài)度與價值觀
通過本節(jié)的學(xué)習(xí),滲透數(shù)形結(jié)合的思想;通過學(xué)生的親身實踐,引發(fā)學(xué)生學(xué)習(xí)興趣;創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度;讓學(xué)生感受數(shù)學(xué)的嚴謹性,培養(yǎng)學(xué)生邏輯思維的縝密性。
教學(xué)重難點
重點:函數(shù)y=asin(ωx+φ)的圖像,函數(shù)y=asin(ωx+φ)的性質(zhì)。
難點: 各種性質(zhì)的應(yīng)用。
教學(xué)工具
投影儀
教學(xué)過程
【創(chuàng)設(shè)情境,揭示課題】
函數(shù)y=asin(ωx+φ)的性質(zhì)問題,是三角函數(shù)中的重要問題,是高中數(shù)學(xué)的重點內(nèi)容,也是高考的熱點,因為,函數(shù)y=asin(ωx+φ)在我們的實際生活中可以找到很多模型,與我們的生活息息相關(guān)。
五、歸納整理,整體認識
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、布置作業(yè): 習(xí)題1-7第4,5,6題.
課后小結(jié)
歸納整理,整體認識
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習(xí)題
作業(yè): 習(xí)題1-7第4,5,6題.
板書
略
人教版數(shù)學(xué)必修教學(xué)設(shè)計及反思必修三數(shù)學(xué)教案設(shè)計篇二
教學(xué)目標(biāo)
(1)了解算法的含義,體會算法思想.
(2)會用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;
(3)學(xué)習(xí)有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力
教學(xué)重難點
重點:算法的含義、解二元一次方程組的算法設(shè)計.
難點:把自然語言轉(zhuǎn)化為算法語言.
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手.作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠鏡或瞄準(zhǔn)鏡);
第二步:瞄準(zhǔn)目標(biāo);
第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點;
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽).
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法.
●課堂探究
預(yù)習(xí)提升
1.定義:算法可以理解為由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題.
2.描述方式
自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖.
3.算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果.
4.算法的特征
(1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束.
(2)確定性:算法的計算規(guī)則及相應(yīng)的計算步驟必須是唯一確定的.
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果.
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù).
(5)不唯一性:解決同一問題的算法可以是不唯一的.
課堂典例講練
命題方向1 對算法意義的理解
例1.下列敘述中,
①植樹需要運苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
④3xx+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12,….
能稱為算法的個數(shù)為()
a.2b.3c.4d.5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法.其中④,3xx+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾.
【答案】b
[規(guī)律總結(jié)]
1.正確理解算法的概念及其特點是解決問題的關(guān)鍵.
2.針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題.
【變式訓(xùn)練】下列對算法的理解不正確的是________
①一個算法應(yīng)包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規(guī)定的運算順序構(gòu)成的完整的解題步驟
③算法中的每一步都應(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果
④一個問題只能設(shè)計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;
由對于同一個問題可以有不同的算法故④不正確.
【答案】④
命題方向2 解方程(組)的算法
例2.給出求解方程組的一個算法.
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組.
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11,
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4,
第四步,輸出4,-1.
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4.
第三步,把x=4代入⑤,得y=-1.
第四步,輸出4,-1.
[規(guī)律總結(jié)]1.本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學(xué)知識的靈活運用.
2.設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟.
【變式訓(xùn)練】
【解】算法如下:s1,①+2×②得5x=1;③
s2,解③得x=;
s3,②-①×2得5y=3;④
s4,解④得y=;
命題方向3 篩選問題的算法設(shè)計
例3.設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值.
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1.比較a與b的大小,若a
2.比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個.
【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93.
[解析]1.先找到序列中的第一個數(shù)m,m=21;
2.將m與89比較,是否相等,如果相等,則搜索到89;
3.如果m與89不相等,則往下執(zhí)行;
4.繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89.
命題方向4 非數(shù)值性問題的算法
例4.一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊.
(1)設(shè)計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
[解析](1)
1.人帶兩只狼過河;
2.人自己返回;
3.人帶一只狼過河;
4.人自己返回;
5.人帶兩只羚羊過河;
6.人帶兩只狼返回;
7.人帶一只羚羊過河;
8.人自己返回;
9.人帶兩只狼過河.
(2)在人運送動物過河的過程中,人離開岸邊時必須保證每個岸邊的羚羊的數(shù)目大于狼的數(shù)目.
[規(guī)律總結(jié)]1.對于非數(shù)值性的問題,在設(shè)計算法時,應(yīng)當(dāng)先建立過程模型,也就是找到解決問題的方案,再把它細化為一步連接一步組成的步驟.從而設(shè)計出算法.
2.首先應(yīng)想到先運兩只狼,這是唯一的首選步驟,只有這樣才可避免狼吃羊,帶過一只羊后,必須將狼帶回來才行.
【變式訓(xùn)練】兩個大人和兩個小孩一起渡河,渡口只有一條小船,每次只能渡一個大人或兩個小孩,他們四人都會劃船,但都不會游泳,他們?nèi)绾味珊?請寫出你的渡河方案及算法.
[解析]因為一次只能渡過一個大人或兩個小孩,而船還要回來渡其他人,所以只能讓兩個小孩先過河,渡河的方案算法為:
1.兩個小孩同船渡過河去;
2.一個小孩劃船回來;
3.一個大人獨自劃船渡過河去;
4.對岸的小孩劃船回來;
5.兩個小孩再同船渡過河去;
6.一個小孩劃船回來;
7.余下的一個大人獨自劃船渡過河去;
8.對岸的小孩劃船回來;
9.兩個小孩再同船渡過河去.
課后習(xí)題
1.以下對算法的描述正確的個數(shù)是()
①對一類問題都有效;
②對個別問題有效;
③計算可以一步步地進行,每一步都有唯一的結(jié)果;
④是一種通法,只要按部就班地做,總能得到結(jié)果.
a.1個b.2個 c.3個 d.4個
[答案]c
[解析]①③④正確,均符合算法的概念與要求,②不正確.
2.算法的有限性是指()
a.算法的最后必包含輸出
b.算法中每個操作步驟都是可執(zhí)行的
c.算法的步驟必須有限
d.以上說法均不正確
[答案]c
[解析]由算法的要求可知,應(yīng)選c.
3.下列語句中是算法的個數(shù)是()
①從廣州到北京旅游,先坐火車,再坐飛機抵達;
②解一元一次方程的步驟是去分母、去括號、移項、合并同類項、系數(shù)化為1;
③方程x2-1=0有兩個實根;
④求1+2+3+4的值,先計算1+2=3,再由3+3=6,6+4=10得最終結(jié)果10.
a.1個 b.2個
c.3個 d.4個
[答案]c
[分析]解答本題可先正確理解算法的概念及其特點,然后逐一驗證每個語句是否正確.
[解析]①中說明了從廣州到北京的行程安排,完成任務(wù);②中給出了一元一次方程這一類問題的解決方法;④中給出了求1+2+3+4的一個過程,最終得出結(jié)果.對于③,并沒有說明如何去算,故①②④是算法,③不是算法.
4.設(shè)計一個算法求方程5x+2y=22的正整數(shù)解,其最后輸出的結(jié)果應(yīng)為________.
[答案](2,6),(4,1)
[解析]因為求方程的正整數(shù)解,所以應(yīng)將x從1開始輸入,直到方程成立.
x=2時,y==6;
5.已知一個學(xué)生的語文成績?yōu)?9,數(shù)學(xué)成績?yōu)?6,外語成績?yōu)?9. 求它的總分和平均成績的一個算法為:
1.取a=89,b=96,c=99;
2.____①____;
3.____②____;
4.輸出d,e.
[解析]求總分需將三個數(shù)相加,求平均分,另需讓總分除以3即可.
x=4時,y==1.
[答案]①計算總分d=a+b+c②計算平均成績e=
人教版數(shù)學(xué)必修教學(xué)設(shè)計及反思必修三數(shù)學(xué)教案設(shè)計篇三
本章教材分析
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ).算法的應(yīng)用是學(xué)習(xí)數(shù)學(xué)的一個重要方面.學(xué)生學(xué)習(xí)算法的應(yīng)用,目的就是利用已有的數(shù)學(xué)知識分析問題和解決問題.通過算法的學(xué)習(xí),對完善數(shù)學(xué)的思想,激發(fā)應(yīng)用數(shù)學(xué)的意識,培養(yǎng)分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助.
本章主要內(nèi)容:算法與程序框圖、基本算法語句、算法案例和小結(jié).教材從學(xué)生最熟悉的算法入手,通過研究程序框圖與算法案例,使算法得到充分的應(yīng)用,同時也展現(xiàn)了古老算法和現(xiàn)代計算機技術(shù)的密切關(guān)系.算法案例不僅展示了數(shù)學(xué)方法的嚴謹性、科學(xué)性,也為計算機的應(yīng)用提供了廣闊的空間.讓學(xué)生進一步受到數(shù)學(xué)思想方法的熏陶,激發(fā)學(xué)生的學(xué)習(xí)熱情.
在算法初步這一章中讓學(xué)生近距離接近社會生活,從生活中學(xué)習(xí)數(shù)學(xué),使數(shù)學(xué)在社會生活中得到應(yīng)用和提高,讓學(xué)生體會到數(shù)學(xué)是有用的,從而培養(yǎng)學(xué)生的學(xué)習(xí)興趣.“數(shù)學(xué)建?!币彩歉呖伎疾橹攸c.
本章還是數(shù)學(xué)思想方法的載體,學(xué)生在學(xué)習(xí)中會經(jīng)常用到“算法思想” “轉(zhuǎn)化思想”,從而提高自己數(shù)學(xué)能力.因此應(yīng)從三個方面把握本章:
(1)知識間的聯(lián)系;
(2)數(shù)學(xué)思想方法;
(3)認知規(guī)律.
本章教學(xué)時間約需12課時,具體分配如下(僅供參考):
1.1.1 算法的概念 約1課時
1.1.2 程序框圖與算法的基本邏輯結(jié)構(gòu) 約4課時
1.2.1 輸入語句、輸出語句和賦值語句 約1課時
1.2.2 條件語句 約1課時
1.2.3 循環(huán)語句 約1課時
1.3算法案例 約3課時
本章復(fù)習(xí) 約1課時
1.1 算法與程序框圖
1.1.1 算法的概念
整體設(shè)計
教學(xué)分析
算法在中學(xué)數(shù)學(xué)課程中是一個新的概念,但沒有一個精確化的定義,教科書只對它作了如下描述:“在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟.”為 了讓學(xué)生更好理解這一概念,教科書先從分析一個具體的二元一次方程組的求解過程出發(fā),歸納出了二元一次方程組的求解步驟,這些步驟就構(gòu)成了解二元一次方程組的算法.教學(xué)中,應(yīng)從學(xué)生非常熟悉的例子引出算法,再通過例題加以鞏固.
三維目標(biāo)
1.正確理解算法的概念,掌握算法的基本特點.
2.通過例題教學(xué),使學(xué)生體會設(shè)計算法的基本思 路.
3.通過有趣的實例使學(xué)生了解算法這一概念的同時,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
重點難點
教學(xué)重點:算法的含義及應(yīng)用.
教學(xué)難點:寫出解決一類問題的算法.
課時安排
1課時
教學(xué)過程
導(dǎo)入新課
思路1(情境導(dǎo)入)
一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量狼就會吃羚羊.該人如何將動物轉(zhuǎn)移過河?請同學(xué)們寫出解決問題的步驟,解決這一問題將要用到我們今天學(xué)習(xí)的內(nèi)容——算法.
思路2(情境導(dǎo)入)
大家都看過趙本山與宋丹丹演的小品吧,宋丹丹說了一個笑話,把大象裝進冰箱總共分幾步?
答案:分三步,第一步:把冰箱門打開;第二步:把大象裝進去;第三步:把冰箱門關(guān)上.
上述步驟構(gòu)成了把大象裝進冰箱的算法,今天我們開始學(xué)習(xí)算法的概念.
思路3(直接導(dǎo)入)
算法不僅是數(shù)學(xué)及其應(yīng)用的重要組成部分,也是計算機科學(xué)的重要基礎(chǔ).在現(xiàn)代社會里,計算機已成為人們?nèi)粘I詈凸ぷ髦胁豢扇鄙俚墓ぞ?聽音樂、看電影、玩游戲、打字、畫卡通畫、處理數(shù)據(jù),計算機是怎樣工作的呢?要想弄清楚這個問題,算法的學(xué)習(xí)是一個開始.
推進新課
新知探究
提出問題
(1)解二元一次方程組有幾種方法?
(2)結(jié)合教材實例 總結(jié)用加減消元法解二元一次方程組的步驟.
(3)結(jié)合教材實例 總結(jié)用代入消元法解二元一次方程組的步驟.
(4)請寫出解一般二元一次方程組的步驟.
(5)根據(jù)上述實例談?wù)勀銓λ惴ǖ睦斫?
(6)請同學(xué)們總結(jié)算法的特征.
(7)請思考我們學(xué)習(xí)算法的意義.
討論結(jié)果:
(1)代入消元法和加減消元法.
(2)回顧二元一次方程組
的求解過程,我們可以歸納出以下步驟:
第一步,①+②×2,得5x=1.③
第二步,解③,得x= .
第三步,②-①×2,得5y=3.④
第四步,解④, 得y= .
第五步,得到方程組的解為
(3)用代入消元法解二元一次方程組
我們可以歸納出以下步驟:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y= .⑤
第四步,把⑤代入③,得x=2× -1= .
第五步,得到方程組的解為
(4)對于一般的二元一次方程組
其中a1b2-a2b1≠0,可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x= .
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y= .
第五步,得到方程組的解為
(5)算法的定義:廣義的算法是指完成某項工作的方法和步驟,那么我們可以說洗衣機的使用說明書是操作洗衣機的算法,菜譜是做菜的算法等等.
在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟.
現(xiàn)在,算法通??梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題.
(6)算法的特征:①確定性:算法的每一步都 應(yīng)當(dāng)做到準(zhǔn)確無誤、不重不漏.“不重”是指不是可有可無的,甚至無用的步驟,“不漏” 是指缺少哪一步都無法完成任務(wù).②邏輯性:算法從開始的“第一步”直到“最后一步”之間做到環(huán)環(huán)相扣,分工明確,“前一步”是“后一步”的前提, “后一步”是“前一步”的繼續(xù).③有窮性:算法要有明確的開始和結(jié)束,當(dāng)?shù)竭_終止步驟時所要解決的問題必須有明確的結(jié)果,也就是說必須在有限步內(nèi)完成任務(wù),不能無限制地持續(xù)進行.
(7)在解決某些問題時,需要設(shè)計出一系列可操作或可計算的步驟來解決問題,這些步驟稱為解決這些問題的算法.也就是說,算法實際上就是解決問題的一種程序性方法.算法一般是機械的,有時需進行大量重復(fù)的計算,它的優(yōu)點是一種通法,只要按部就班地去做,總能得到結(jié)果.因此算法是計算科學(xué)的重要基礎(chǔ).
應(yīng)用示例
思路1
例1 (1)設(shè)計一個算法,判斷7是否為質(zhì)數(shù).
(2)設(shè)計一個算法,判斷35是否為質(zhì)數(shù).
算法分析:(1)根據(jù)質(zhì)數(shù)的定義,可以這樣判斷:依次用2—6除7,如果它們中有一個能整除7,則7不是質(zhì)數(shù),否則7是質(zhì)數(shù).
算法如下:(1)第一步,用2除7,得到余數(shù)1.因為余數(shù)不為0,所以2不能整除7.
第二步,用3除 7,得到余數(shù)1.因為余數(shù)不為0,所以3不能整除7.
第三步,用4除7,得到余數(shù)3.因為余數(shù)不為0,所以4不能整除7.
第四步,用5除7,得到余數(shù)2.因為余數(shù)不為0,所以5不能整除7.
第五步,用6除7,得到余數(shù)1.因為余數(shù)不為0,所以6不能整除7.因此,7是質(zhì)數(shù).
(2)類似地,可寫出“判斷35是否為質(zhì)數(shù)”的算法:第一步,用2除35,得到余數(shù)1.因為余數(shù)不為0,所以2不能整除35.
第二步,用3除35,得到余數(shù)2.因為余數(shù)不為0,所以3不能整除35.
第三步,用4除35,得到余數(shù)3.因為余數(shù)不為0,所以4不能整除35.
第四步,用5除35,得到余數(shù)0.因為余數(shù)為0,所以5能整除35.因此,35不是質(zhì)數(shù).
點評:上述算法有很大的局限性,用上述算法判斷35是否為質(zhì)數(shù)還可以,如果判斷1997是否為質(zhì)數(shù)就麻煩了,因此,我們需要尋找普適性的算法步驟.
變式訓(xùn)練
請寫出判斷n(n 2)是否為質(zhì)數(shù)的算法.
分析:對于任意的整數(shù)n( n2),若用i表示2—(n-1)中的任意整數(shù),則“判斷n是否為質(zhì)數(shù)”的算法包含下面的重復(fù)操作:用i除n,得到余數(shù)r.判 斷余數(shù)r是否為0,若是,則不是質(zhì)數(shù);否則,將i的值增加1,再執(zhí)行同樣的操作.
這個操作一直要進行到i的值等于(n-1)為止.
算法如下:第一步,給定大于2的整數(shù)n.
第二步,令i=2.
第三步,用i除n,得到余數(shù)r.
第四步,判斷“r=0”是否成立.若是,則n不是質(zhì)數(shù),結(jié)束算法;否則,將i的值增加1,仍用i表示.
第五步,判斷“i(n-1)”是否成立.若是,則n是質(zhì)數(shù),結(jié)束算法;否則,返回第三步.
例2 寫出用“二分法”求方程x2-2=0 (x0)的近似解的算法.
分析:令f(x)=x2-2,則方程x2-2=0 (x0)的解就是函數(shù)f(x)的零點.
“二分法”的基本思想是:把函數(shù)f(x)的零點所在的區(qū)間[a,b](滿足f(a)?f(b)0)“一分為二”,得到[a,m]和[m,b].根據(jù)“f(a)?f(m)0”是否成立,取出零點所在的區(qū)間[a,m]或[m,b],仍記為[a,b].對所得的區(qū)間[a,b]重復(fù)上述步驟,直到包含零點的區(qū)間[a,b]“足夠小”,則[a,b]內(nèi)的數(shù)可以作為方程的近似解.[來源:學(xué)&科&網(wǎng)z&x&x&k]
解:第一步,令f(x)=x2-2,給定精確度d.
第二步,確定區(qū)間[a,b],滿足f(a)?f(b)0.
第三步,取區(qū)間中點m= .
第四步,若f(a)?f(m)0,則含零點的區(qū)間為[a,m];否則,含零點的區(qū)間為[m,b].將新得到的含零點的區(qū)間仍記為[a,b].
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
當(dāng)d=0.005時,按照以上算法,可以得到下表.
a b |a-b|
1 2 1
1 1.5 0.5
1.25 1.5 0.25
1.375 1.5 0.125
1.375 1.437 5 0.062 5
1.406 25 1.437 5 0.031 25
1.406 25 1.421 875 0.015 625
1.414 062 5 1.421 875 0.007 812 5
1.414 062 5 1.417 968 75 0.003 906 25
于是,開區(qū)間(1.414 062 5,1.417 968 75)中的實數(shù)都是當(dāng)精確度為0.005時的原方程的近似解.實際上,上述步驟也是求 的近似值的一個算法.
點評:算法一般是機械的,有時需要進行大量的重復(fù)計算,只要按部就班地去做,總能算出結(jié)果,通常把算法過程稱為“數(shù)學(xué)機械化”.數(shù)學(xué)機械化的最大優(yōu)點是它可以借助計算機來完成,實際上處理任何問題都需要算法.如:中國象棋有中國象棋的棋譜、走法、勝負的評判準(zhǔn)則;而國際象棋有國際象棋的棋譜、走法、勝負的評判準(zhǔn)則;再比如 申請出國有一系列的先后手續(xù),購買物品也有相關(guān)的手續(xù)……
思路2
例1 一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不 少于羚羊的數(shù)量就會吃羚羊.該人如何將動物轉(zhuǎn)移過河?請設(shè)計算法.
分析:任何動物同船不用考慮動物的爭斗但需考慮承載的數(shù)量,還應(yīng)考慮到兩岸的動物都得保證狼的數(shù)量要小于羚羊的數(shù)量,故在算法的構(gòu)造過程中盡可能保證船里面有狼,這樣才能使得兩岸的羚羊數(shù)量占到優(yōu)勢.
解:具體算法如下:
算法步驟:
第一步:人帶兩只狼過河,并自己返回.
第二步:人帶一只狼過河,自己返回.
第三步:人帶兩只羚羊過河,并帶兩只狼返回.
第四步:人帶一只羊過河,自己返回.
第五步:人帶兩只狼過河.
點評:算法是解決某一類問題的精確描述,有些問題使用形式化、程序化的刻畫是最恰當(dāng)?shù)?這就要求我們在寫算法時應(yīng)精練、簡練、清晰地表達,要善于分析任何可能出現(xiàn)的情況,體現(xiàn)思維的嚴密性和完整性.本題型解決問題的算法中某些步驟重復(fù)進行多次才能解決,在現(xiàn)實生活中,很多較復(fù)雜的情境經(jīng)常遇到這樣的問題,設(shè)計算法的時候,如果能夠合適地利用某些步驟的重復(fù),不但可以使得問題變得簡單,而且可以提高工作效率.
例2 喝一杯茶需要這樣幾個步驟:洗刷水壺、燒水、洗刷 茶具、沏茶.問:如何安排這幾個步驟?并給出兩種算法,再加以比較.
分析:本例主要為加深對算法概念的理解,可結(jié)合生活常識對問題進行分析,然后解決問題.
解:算法一:
第一步,洗刷水壺.
第二步,燒水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壺.
第二步,燒水,燒水的過程當(dāng)中洗刷茶具.
第三步,沏茶.
點評:解決一個問題可有多個算法,可以選擇其中最優(yōu)的、最簡單的、步驟盡量少的算法.上面的兩種算法都符合題意,但是算法二運用了統(tǒng)籌方法的原理,因此這個算法要比算法一更科學(xué).
例3 寫出通過尺軌作圖確定線段ab一個5等分點的算法.
分析:我們借助于平行線定理,把位置的比例關(guān)系變成已知的比例關(guān)系,只要按照規(guī)則一步一步去做就能完成任務(wù).
解:算法分析:
第一步,從已知線段的左端點a出發(fā),任意作一條與ab不平行的射線ap.
第二步,在射線上任取一個不同于端點a的點c,得到線段ac.
第三步,在射線上沿ac的方向截取線段ce=ac.
第四步,在射線上沿ac的方向截取線段ef=ac.
第五步,在射線上沿ac的方向截取線段fg=ac.
第六步,在射線上沿ac的方向截取線段gd=ac,那么線段ad=5ac.
第七步,連結(jié)db.
第八步,過c作bd的平行線,交線段ab于m,這樣點m就是線段ab的一個5等分點.
點評:用算法解決幾何問題能很好地訓(xùn)練學(xué)生的思維能力,并能幫助我們得到解決幾何問題的一般方法,可謂一舉多得,應(yīng)多加訓(xùn)練.
知能訓(xùn)練
設(shè)計算法判斷一元二次方程ax2+bx+c=0是否有實數(shù)根.
解:算法步驟如下:
第一步,輸入一元二次方程的系數(shù):a,b,c.
第二步,計算δ=b2-4ac的值.
第三步,判斷δ≥0是否成立.若δ≥0成立,輸出“方程有實根”;否則輸出“方程無實根”,結(jié)束算法.
點評:用算法解決問題的特點是:具有很好的程序性,是一種通法.并且具有確定性、邏輯性、有窮性.讓我們結(jié)合例題仔細體會算法的特點.
拓展提升
中國網(wǎng)通規(guī)定:撥打市內(nèi)電話時, 如果不超過3分鐘,則收取話費0.22元;如果通話時間超過3分鐘,則超出部分按每分鐘0.1元收取通話費,不足一分鐘按一分鐘計算.設(shè)通話時間為t(分鐘),通話費用y(元),如何設(shè)計一個程序,計算通話的費用.
解:算法分析:
數(shù)學(xué)模型實際上為:y關(guān)于t的分段函數(shù).
關(guān)系式如下:
y=
其中[t-3]表示取不大于t-3的整數(shù)部分.
算法步驟如下:
第一步,輸入通話時間t.
第二步,如果t≤3,那么y=0.22;否則判斷t∈z 是否成立,若成立執(zhí)行
y=0.2+0.1×(t-3);否則執(zhí)行y=0.2+0.1×([t-3]+1).
第三步,輸出通話費用c.
課堂小結(jié)
(1)正確理解算法這一概念.
(2)結(jié)合例題掌握算法的特點,能夠?qū)懗龀R妴栴}的算法.
作業(yè)
課本本節(jié)練習(xí)1、2.
設(shè)計感想
本節(jié)的引入精彩獨特,讓學(xué)生在感興趣的故事里進入本節(jié)的學(xué)習(xí).算法是本章的重點也是本章的基 礎(chǔ),是一個較難理解的概念.為了讓學(xué)生正確理解這一概念,本節(jié)設(shè)置了大量學(xué)生熟悉的事例,讓學(xué)生仔細體 會反復(fù)訓(xùn)練.本節(jié)的事例有古老的經(jīng)典算法,有幾何算法等,因此這是一節(jié)很好的課例.
人教版數(shù)學(xué)必修教學(xué)設(shè)計及反思必修三數(shù)學(xué)教案設(shè)計篇四
教學(xué)目標(biāo):①掌握對數(shù)函數(shù)的性質(zhì)。
②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0
調(diào)遞減,所以loga5.1loga5.9 ;當(dāng)a1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1
板書:
解:ⅰ)當(dāng)0
∵5.15.9 ∴l(xiāng)oga5.1loga5.9
ⅱ)當(dāng)a1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.15.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.60,lnл0,logл0.50;lnл1,
log0.50.61,所以logл0.5 log0.50.6 lnл。
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
人教版數(shù)學(xué)必修教學(xué)設(shè)計及反思必修三數(shù)學(xué)教案設(shè)計篇五
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點
教學(xué)過程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的 “思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。