總結是我們對過去一段時間的付出和努力的總結和肯定。在寫總結時,我們可以選擇適當?shù)钠托问剑员愀玫乇磉_自己的想法。每個人的總結風格和寫作風格都有所不同,因此我們要保持個人特色。
教師的數(shù)學教學與直線方程教學反思篇一
學習解析幾何知識,"解析法"思想始終貫穿在全章的每個知識點,同時"轉化、討論"思想也相映其中,無形中增添了數(shù)學的魅力以及優(yōu)化了知識結構。在學習直線與方程時,重點是學習直線方程的五種形式,以直線作為研究對象,通過引進坐標系,借助"數(shù)形結合"思想,從方程的角度來研究直線,包括位置關系及度量關系。大多數(shù)學生普遍反映:相對立體幾何而言,平面解析幾何的學習是輕松的、容易的,但是,也存在"運算量大,解題過程繁瑣,結果容易出錯"等致命的弱點等,無疑也影響了解題的質(zhì)量及效率。
中也是遵循上述思路開展教學的,而且也取得了一定的效果。下面談一下對直線與方程的教學反思:
(1)教學目標與要求的反思:
基本上達到了預定教學的目標,由于個別學生基礎較差,沒有達到教學目標與要求,課后要對他們進行個別輔導。
通過問題引入,從簡單到復雜,由特殊到一般思維方法,讓學生參與到教學中去,學生的積極性很高,但師生互動與溝通缺少一點默契,尤其基礎較差的學生,有待以后不斷改進。
基本上達到了預定教學的效果,通過數(shù)形結合思想方法,培養(yǎng)學生能提出問題和解決問題的思維方式,學會反思,從而提高學生綜合解題的能力。
教師的數(shù)學教學與直線方程教學反思篇二
各有其局限性。而一般形式的方程雖無任何限制,但幾何特征卻不明顯。通過引導,使學生經(jīng)歷下列過程:首先建立坐標系,將幾何問題代數(shù)化,用代數(shù)語言描述幾何要素及其相互關系;進而,將幾何問題轉化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結論的`幾何含義,最終解決幾何問題。通過上述活動,使學生感受到解析幾何研究問題的一般程序。由"形"問題轉化為"數(shù)"問題研究,同時數(shù)形結合的思想,還應包含構造"形"來體會問題本質(zhì),開拓思路,進而解決"數(shù)"的問題。
總之,在直線與方程這一節(jié)中,我們以后的教學更應該注重學生能力的培養(yǎng),讓學生自己推導公式,在推導的過程中認識公式,使學生理解公式,從而認識解析法的數(shù)學魅力,正確運用解析法,而不是把公式當做是記憶的東西,一味的死記硬背,而忘掉條件限制。
教師的數(shù)學教學與直線方程教學反思篇三
班級學生的總體數(shù)學水平處于我校的中等水平,學生們對于數(shù)學這個學科本身的興趣有限,對前面學過的有關直線和圓中的基本知識點掌握的一般。針對以上實際情況,我采用如下方案對參數(shù)方程進行了講解。
第一,講解學習本章的重要意義。通過本章節(jié)的教學使學生明白現(xiàn)實世界的問題是多維度的、多種多樣的,僅僅用一種坐標系,一種方程來研究是很難解決現(xiàn)實世界中的復雜的問題的。在這一點上,參數(shù)方程有其自身的優(yōu)越性,學習參數(shù)方程有其必要性。第二,講解參數(shù)方程的基本原理和基本知識。通過學習參數(shù)方程的基本概念、基本原理、基本方法,以及方程之間、坐標之間的互化,使學生明白坐標系及各種方程的表示方法是可以視實際需要,主觀能動地加以選擇的。第三,講解典型例題和解題方法。通過例題的講解讓學生們進一步鞏固基礎知識,同時還能熟練解題方法,為進一步學習數(shù)學和其他自然科學知識打好基礎。第四,布置課后練習。既可以鞏固學過的知識,又可以達到溫故而知新的效果。
第一,突出教學內(nèi)容的本質(zhì),注重學以致用。課堂不應該是“一言堂”,學生也不再是教師注入知識的“容器瓶”,課堂上,老師應為學生講清楚相關理論、原理及思維方法,做到授之以漁,而非僅是授之以魚。第二,保證活躍的課堂氣氛,進一步激發(fā)了學生的學習潛能。實踐證明,刻板的'課堂氣氛往往禁錮學生的思維,致使學習積極參與度下降,學習興趣下降,最終影響學習成績和創(chuàng)造性思維的發(fā)展。第三,結合本節(jié)課的具體內(nèi)容,確立互動式教學法進行教學。積極創(chuàng)造機會讓不同程度的學生發(fā)表自己的觀點,調(diào)動學生學習積極性,拉近師生距離,提高知識的可接受度,進而完成知識的轉化,即變書本的知識、老師的知識為自己的知識。第四,有效地提高教學實效。通過老師的講解和學生的練習,讓學生不斷地鞏固基礎知識的同時,讓學生們既要能做這道題,還要能做類似的題目,做到既知其然,又知其所以然,舉一反三,觸類旁通,把知識靈活運用。
第一,本節(jié)課的知識量比較大,而且是建立在向量定義基礎之上。這些知識學生都已經(jīng)學過了,在課堂上只做了一個簡單的復習。但是在接下來的課堂上發(fā)現(xiàn)一部分學生由于基礎知識不扎實,導致課堂上簡單的計算出錯,從而影響到學生在做練習時反映出的思維比較的緩慢及無法進行有效的思考的問題。從課堂的效果來看學生對運算的熟練程度還不夠,一定程度上存在很大的惰性,不愿動筆的問題存在,有待于在以后的教學中督促學生加強動筆的頻率,減少惰性。
教師的數(shù)學教學與直線方程教學反思篇四
本節(jié)課是在學生學會用字母表示數(shù)的基礎上進行教學的,方程作為一種重要的思想方法,它對豐富學生解決問題的策略,提高解決問題的能力,發(fā)展數(shù)學素養(yǎng)有著非常重要的意義。本節(jié)課的教學設計是從學生已有的知識和經(jīng)驗出發(fā),旨在引導學生經(jīng)歷將現(xiàn)實問題數(shù)學化的過程。
整節(jié)課先從觀察天平兩邊的物體質(zhì)量入手,先得出等式的含義,再結合具體的問題情境,使學生通過觀察、分析和比較,在思考和交流中由具體到抽象,一步步地揭示出方程的含義。在例1和例2的教學基礎上,及時組織學生討論“等式和方程”有什么聯(lián)系?幫助學生感受等式和方程的聯(lián)系與區(qū)別,體會方程就是一類特殊的等式。當學生對等式和方程的聯(lián)系與區(qū)別已有深刻領會后,讓學生自己試著用語言來表述?!霸囈辉嚒敝校行W生列出如“20-12=x”這樣的方程,這時要進行強調(diào),告訴學生盡量避免將未知數(shù)單獨放在等式的一邊。由于線段圖很形象直觀,學生看到了線段圖上的大括號就想到了這是表示把兩部分結合起來,很快就列出加法的方程。練一練的第一大題,對學生來說是重點,也是容易錯的地方,很多學生只找出了不含未知數(shù)的等式,而沒有想到方程也是等式,在這里要強調(diào)找的方法,先找等式,再在等式里找出方程。練習一的第二大題中的第2幅圖“原有x本書,借出56本,還剩60本”,用方程表示數(shù)量關系時,還有部分學生寫出了56+60=x這樣的方程。這時,我便及時指出這樣寫的不合理性,讓學生及時改正,強調(diào)過后,后面的練習題學生就順利多了,沒再出現(xiàn)以上這樣的情況。
在教學過程中,我還有很多細節(jié)問題沒有注意到,師父都給我一一指出來了。讓我明白,課堂教學中教師應該做一個敏銳的觀察者和引導者,針對學生出現(xiàn)的問題,應該及時地給予點撥和糾正,這樣才能幫助學生排除學習中的困惑,讓他們少走彎路,更好地理解和消化。
教師的數(shù)學教學與直線方程教學反思篇五
《等式與方程》教學反思這是開學第一天,我給孩子們上的新課內(nèi)容。課堂氣氛很活躍,孩子們回答問題也很積極。本節(jié)課的重點是方程的概念以及等式與方程的關系?!昂形粗獢?shù)的等式是方程”,這句話中包括兩個條件,一個是“含有求知數(shù)”,一個是“等式”。因此,“含有未知數(shù)”與“等式”是方程意義的兩個重要的內(nèi)涵。在上課之前,我本來是想帶天平演示以加深孩子們對等式的理解和掌握,后來為了課堂實行方便有效,我只帶了掛圖,孩子們也學的很積極。在這主要是讓學生學會判斷哪些是方程,哪些不是方程。斷定一個式子是不是方程,要從兩個條件入手,一是“含有求知數(shù)”二是“等式”,兩個條件缺一不可。從而學生互相問,這個為什么不是,哪個為什么不是。含有求知數(shù):5y不是方程,因為不是等式。5+8=13不是方程,因為沒有求知數(shù)。所以方程既要是等式又要含有求知數(shù)。x+y=z也是方程,因為含有求知數(shù),并且是等式。y=5也是方程,因為含有求知數(shù),并且是等式。通過本節(jié)課的學習,孩子們基本上可以判斷哪些是方程,哪些是等式,也分清了等式和方程之間的關系。
教師的數(shù)學教學與直線方程教學反思篇六
先前認真閱讀了這一單元的教材,發(fā)現(xiàn)與老教材有較大的變化。又認真閱讀了備課手冊上侯正海老師的文章《初步體會方程的思想——“方程”教學建議》。于是對方程教材的編排體系有了大致的了解。
昨天讓學生預習:數(shù)學教材1到2頁,并且完成《補充習題》第一頁。預習的好處顯而易見,我發(fā)現(xiàn):學生對于列方程問題不大(只是少數(shù)學生在列方程時寫單位),問題大量地出在對“等式”“方程”“式子”的.概念的理解和區(qū)分上。所以,今天這堂課的難點就是讓學生深刻理解和熟悉“等式”和“方程”的概念及其聯(lián)系和區(qū)別。
教學過程簡錄:口算;教學例1,理解等式;教學例2,理解等式與不等式,把等式分類,分成不含未知數(shù)的等式和含有未知數(shù)的等式,揭示方程的概念,解釋50+50=100,x+50〈200,x+8不是方程的原因;訂正〈補充練習〉第一題;揭示等式和方程的區(qū)別和聯(lián)系——等式包括方程,方程是一類特殊的等式;讓學生做“試一試”,比較根據(jù)第二張圖列的方程12+x=20,一位學生補充了20-x=12,我補充了20-12=x,先確定這三個等式都是方程,但第三個方程一般是不列的,因為根據(jù)20-12可以直接得出答案,它就相當于算術方法解題了。我強調(diào):看完圖,順向思維,直接得到的方程,一般是最好的——點到位止,我知道學生對于我的話不一定理解的,就給予一定的暗示和滲透吧。完成“練一練”,重點是第一題(我讓學生寫出來的)。
反思:由于難點吃透,學生對于方程的意義已經(jīng)掌握了——做到能背能舉例能比較能說明,但在“練一練”的回答上我有疑惑。哪些是等式,哪些是方程。我估計教材的意圖是指哪些是不包括方程的等式,哪些是方程,我也是按這樣的要求讓學生寫的,但我還是讓學生說說方程全部是等式。教學后,總感別扭?!澳男┦堑仁?,哪些是方程”的問法是二分法,所以我才讓學生寫等式時不寫方程。如果這樣要求,哪些是等式?再把等式中的方程找出來。這樣要求,可能更加清楚,不會讓我疑惑了。
教師的數(shù)學教學與直線方程教學反思篇七
依據(jù)教學過程、指導教師及學生的反饋信息,本人對本節(jié)課有如下幾點反思:
一、成功之處。
根據(jù)實際教學過程反映,學生對本節(jié)課教授知識點能充分吸收、掌握,課堂學習氣氛活躍。
第一、重點突出學生活動。在教學過程中,我設計了五個活動環(huán)節(jié):(1)回顧數(shù)軸三要素,理解數(shù)軸上點的坐標的幾何意義;(2)通過類比進行直線參數(shù)方程的探究活動;(3)直線參數(shù)方程的形成;(4)直線參數(shù)方程的簡單應用;(5)學生課后的拓展學習。
第二、結合本節(jié)課的具體內(nèi)容,采用學生分組交流,師生互動式教學法。創(chuàng)造機會讓不同程度的學生發(fā)表自己的觀點,調(diào)動學生學習積極性,使學生自然而然地渴望進一步了解相關的知識,提高知識的可接受度,進而完成知識的轉化,即變書本的知識、老師的知識為學生自己的知識。
第三、在例題設置中注重聯(lián)系學生實際,通過情境創(chuàng)設,讓學生體會數(shù)學的應用價值,在教學過程中時刻注意觀察學生是否置身于數(shù)學學習活動中,是否精神飽滿、興趣濃厚、探究積極,并愿意與老師、同學交流。
二、不足之處。
第一、在設置問題情境上可以做得更好:比如在課程引入時,根據(jù)本節(jié)課的內(nèi)容,如果能適當聯(lián)系一些生活當中的`實例,那么學生思維可能會更活躍些,課堂可能會更豐滿些;做練習時,也可以補充一些聯(lián)系實際的問題。
第二、在學生的自主探究方面可以再放開些:如何引導學生,讓學生的數(shù)學思維更加的活躍,探索新知的欲望更強烈些。因此,課堂上可以更放開些,大膽的讓學生去思、去想、去做,同時要注意把握課堂學習秩序。比如在推導直線的參數(shù)方程時,如果讓學生合作性的去討論,并形成正確的認知,那么學生的探究意識在這節(jié)課就能體現(xiàn)的更好。
第三、信息技術應用能力有待進一步提高:通過這節(jié)課的教與學,我發(fā)現(xiàn)自己在實現(xiàn)函數(shù)圖象過程的動態(tài)演示方面還不夠得心應手,有的方面還可以向同事學習。
總之,數(shù)學科的教學活動,無論是動手實驗、合作探究還是交流互動等,都應當為理解數(shù)學內(nèi)容服務;也不是所有數(shù)學內(nèi)容的引入、發(fā)現(xiàn)都需要實驗操作,特別是在高中階段,應當更多地引導學生從數(shù)學內(nèi)在的邏輯發(fā)展要求去探索數(shù)學概念的引入、數(shù)學原理的發(fā)現(xiàn)等。讓學生朝著樂觀、積極、自信的方向更好的發(fā)展,感受數(shù)學課中的快樂與幸福!這也正是積極心理學視野下的數(shù)學課堂教學。
教師的數(shù)學教學與直線方程教學反思篇八
1、找出a,b,c的相應的數(shù)值。
2、驗判別式是否大于等于0。
3、當判別式的數(shù)值符合條件,可以利用公式求根。
在講解過程中,我讓學生直接用公式求根,第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現(xiàn)錯誤較多:
2、求根公式本身就很難,形式復雜,代入數(shù)值后出錯很多、其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進行,提前做著一步在到求根公式時可以把數(shù)值直接代入。在今后的教學中注意詳略得當,不該省的地方一定不能省,力求收到更好的教學效果。
教師的數(shù)學教學與直線方程教學反思篇九
1.教學計劃中,原是考慮把探究1和探究2作為一個課時的,但是在學習了探究1后,發(fā)現(xiàn)我們的學生對應用題的解題分析,依然是個難點,很多同學分析題意不清,也有不少同學解方程需要花大量的時間,而這類“平均變化率”的問題聯(lián)系生活又非常密切,是一元二次方程在生活中最典型的應用,考慮到學生的實際情況和教學內(nèi)容的重要性,決定把探究2問題作為一個課時來探究。
2、在教法、學法上我采用“探索、歸納與合作交流”相結合的方法,采用嘗試法、討論法、先學后教引導式講授法等方法培養(yǎng)學生自主學習,合作交流的學習習慣。讓學生在自主探究合作交流中加深理解,分析實際問題中的數(shù)量關系,不但讓學生“學會”還要讓學生“會學”
轉載自 KAoYaNmIJi.cOm
3、以導學案的形式,創(chuàng)設由特殊性到一般性的實際問題為情境,讓學生感受知識在生活中的應用,習題緊扣生活,難度不大,增加學生的自信及探究的積極性。通過學生討論交流,歸納出一般的規(guī)律。
4、學生通過由特殊到一般的實際問題的探究后,及時讓學生歸納,形成知識與方法。
5、鼓勵學生自主學習,理解教材。采用學案問題設置的方式對問題進行分解,最后師生共同完成。由于是例題,所以注重板書格式。
6、學案的設置,具有層次性,以問題為主線,引導學生自主探究,小結歸納。有梯度的設置習題,讓學生去挑戰(zhàn)中考題,感受中考的難度,體會成功的喜悅。并且注重問題及考察需要,體現(xiàn)先學后教、合作探究,自主學習的課改精神。
7、在時間的安排上,教學環(huán)節(jié)(一)、(二)部分計劃讓學生展示后簡單點評,但是考慮到學生的實際情況和學生知識的形成過程,不光是要結果,囫圇吞棗,所以做了詳細的推導,用了不少的時間,這樣導致了教學程序的不完整,挑戰(zhàn)中考題沒能在課堂上完成。環(huán)節(jié)(一)、(二)的習題設置有點多和重復,使得環(huán)節(jié)(五)中的綜合練習沒有在課堂中探究和展示,所以在習題的選擇上還要多加精選,力求做到精選精煉。
8、生生交流活動少,學生大多數(shù)都是各自為陣,沒有發(fā)揮小組的作用,在教學環(huán)節(jié)(三)的自主學習中,如果能發(fā)揮小組的帶動作用,充分調(diào)動學生的能動性,真正發(fā)揮學生的主體地位,我想會更好一些,在引導學生討論上做得不夠,不能兼顧全體。
教師的數(shù)學教學與直線方程教學反思篇十
本節(jié)課面對的學生是文科班位于中等層次的班級。文科班的學生對于數(shù)學普遍存在畏難情緒,所以在教學設計之初就立足于從簡到難的思想,所以在教學過程中有了從特殊化到一般化的,再從一般化到特殊化這樣兩個環(huán)節(jié)并且設計的數(shù)據(jù)都比較簡單易算,希望能夠引起學生學習興趣,并從中體會到數(shù)學學習中解決問題的思維過程。從課堂效果來看這個目的基本達到,學生課堂反映較好,參與積極,氣氛熱烈。
二.教學內(nèi)容方面:
本節(jié)課主要解決的問題是掌握直線的點斜式方程,斜截式方程。直線是解析幾何部分最基礎的圖形,其方程形式有點斜式,斜截式,兩點式,截距式,一般式這五種形式。在這五種形式中出現(xiàn)最頻繁,最基本的就是點斜式和斜截式。所以對這兩種形式要做到能夠熟練的根據(jù)條件選擇合適的直線方程形式。在課堂中可以發(fā)現(xiàn)學生已經(jīng)基本能夠達到這一點。但是也存在幾個方面的問題,如果直接提供一點一斜率,學生馬上能夠把直線方程的形式脫口而出。但是如果提供的是傾斜角,對傾斜角加以適當變化的話,部分學生還是存在一定的困難,有些是對斜率公式的不熟悉,有些是對三角函數(shù)公式的不熟悉造成的。說明部分學生對于三角函數(shù)部分的內(nèi)容基礎不扎實遺忘率較高,對于斜率和傾斜角的關系的理解還是存在疏漏之處,思維嚴密性需要提高。
三.教學改進:
第一需要繼續(xù)強化基本概念的教學,深化學生對基本概念的理解。可以通過一些小練習,如填空,選擇等加強學生邏輯思維能力的訓練。如課堂練習中的變式還是較好的一種方式。以變式這種方式更易于學生發(fā)現(xiàn)問題的相同與不同之處,如果能夠讓學生自己加以適當?shù)目偨Y,老師再加點評,那效果會更好。不過這對課堂時間的控制要求較高,所以采用何種方式展開需要更多的思考。
第二需要設置梯度,逐步提高難度。由于本節(jié)課面對的對象,而且這是直線方程的第一節(jié)課,所以設置的內(nèi)容還是簡單易懂的,但是以后的課程中難度要求還是需要逐步提高綜合應用能力,這需要在以后的課程中逐步貫徹。
教師的數(shù)學教學與直線方程教學反思篇十一
直線方程的教學是在學習了直線的傾斜角和斜率公式之后推導引入直線的點斜式方程,進一步延伸出其他形式的直線方程和相互轉化,為下面直線方程的應用如中點公式、距離公式、直線和圓的位置關系等打下良好的基礎。
以下是在課堂教學中的幾點體會和建議:
(一)初步培養(yǎng)了學生平面解析幾何的思想和一般方法。
在初中,學生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過來任意畫一條,要同學們寫出方程表達式,學生剛開始會無從下手,從而激發(fā)學生學習的興趣。隨著教學的展開,讓學生逐步形成平面解析幾何的方法,如建立坐標啊,設點啊,建立關系式啊,得出方程啊等等,初步培養(yǎng)學生的平面解析幾何思維,為后面學習圓、橢圓和相關圓錐曲線打下良好的基礎。
(二)在教學中貫徹“精講多練”的教學改革探索。
我們都知道,對于職中的學生,基礎差,底子薄,理解能力差,動手能力差,要想讓學生學有所得,最好的辦法就是精講多練,提高學生的動手能力。因此在教學中,我們通常是由練習引入,簡單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個內(nèi)容經(jīng)過三輪的練習,讓學生能夠很容易的掌握。
(三)注意數(shù)形結合的教學。
解析幾何的特點就是形數(shù)結合,而形數(shù)結合的思想是一種重要的數(shù)學思想,是教學大綱中要求學生學習的內(nèi)容之一,所以在教學中要注意這種數(shù)學思想的教學。每一種直線方程的講解都進行畫圖演示,讓學生對每一種直線方程所需的'條件根深蒂固,如點斜式一定要點和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個坐標軸上的截距等等。并在直線方程的相互轉化過程中也配以圖形(請參考一般方程的課件)。
(四)注重直線方程的承前啟后的作用。
教材承接了初中函數(shù)的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來介紹平面解析幾何的思想和一般方法,可見本節(jié)內(nèi)容所處的重要地位,學好直線對以后的學習尤為重要。事實上,教材在研究了直線的方程和討論了直線的幾何性質(zhì)后,緊接著就以直線方程為基礎,進一步討論曲線與方程的一般概念。
教師的數(shù)學教學與直線方程教學反思篇十二
一元二次方程一課,感觸頗深。下面談一下自己的幾點體會:
一、本節(jié)課,知識的呈現(xiàn)作了重大調(diào)整,不是以講解為主方式也不是以單一的知識為線條,而是在突出數(shù)學知識的同時,將數(shù)學知識和結論溶于數(shù)學活動之中,這樣學生學習數(shù)學知識的過程就成了進行數(shù)學實驗的過程,成了“做學問”的過程。在這樣的探究學習過程中,學生得到的數(shù)學知識是通過自己實驗、觀察、討論、歸納得到的。
二、以問題為主線,解放學生的身心,激發(fā)學生的靈感;體現(xiàn)“自主-----合作-----探究”的學習方式,培養(yǎng)學生小組合作的學習能力,讓學生感受到過程是自己親身體驗的,結論是自己發(fā)現(xiàn)的,知識是自己主動獲取并學會的,能夠增強學生對學習的信心,再次突出本節(jié)課的亮點。
三、把課堂真正的還給學生。我參與,我快樂,我是課堂的主人。放手讓學生有話可說,有疑好爭,為學生深入思考、積極探索提供機會、做到師生互動、生生互動,在平等、民主、合作的氛圍中分享成功的快樂。
四、備情緒,激發(fā)興趣和學習動力,把情緒調(diào)整到高漲狀態(tài)。本節(jié)課教師采用多種激勵語言,如心動不如行動,躍躍欲試,不如試一試。不怕你說什么,就怕你什么也不說等激發(fā)學生興趣,調(diào)動學習動力,把學生的學習情緒調(diào)整到比較理想的、十分高漲的狀態(tài)。
總之,本節(jié)課用全新的理念,全新的教學模式,給我全新的感受,為我以后的教學指名了前進的方向。努力實踐,打造精品課堂。