總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結(jié)吧。相信許多人會(huì)覺得總結(jié)很難寫?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)北師 高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)三角函數(shù)篇一
⒈同角三角函數(shù)的基本關(guān)系式
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數(shù)關(guān)系:對角線上兩個(gè)函數(shù)互為倒數(shù);
(2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。
(主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。
(3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
⒉兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
<
高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)北師 高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)三角函數(shù)篇二
集合的分類
(1)按元素屬性分類,如點(diǎn)集,數(shù)集。
(2)按元素的個(gè)數(shù)多少,分為有/無限集
關(guān)于集合的概念:
(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。
(2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。
(3)無序性:判斷一些對象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:
含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作n;
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作n+或n_;
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作z;
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作r。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)。)
1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.
無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集n可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”
而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為
{x∈r│x能被2整除,且大于0}或{x∈r│x=2n,n∈n+},
大括號(hào)內(nèi)豎線左邊的x表示這個(gè)集合的任意一個(gè)元素,元素x從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合i中,屬于集合a的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合a的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合a的一個(gè)特征性質(zhì)。于是,集合a可以用它的性質(zhì)p(x)描述為{x∈i│p(x)}
它表示集合a是由集合i中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。
例如:集合a={x∈r│x2-1=0}的特征是x2-1=0
高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)北師 高一下冊數(shù)學(xué)知識(shí)點(diǎn)總結(jié)三角函數(shù)篇三
1.“包含”關(guān)系—子集
注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)a={_2-1=0}b={-1,1}“元素相同”
結(jié)論:對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b
①任何一個(gè)集合是它本身的子集。aía
②真子集:如果aíb,且a1b那就說集合a是集合b的真子集,記作ab(或ba)
③如果aíb,bíc,那么aíc
④如果aíb同時(shí)bía那么a=b
3.不含任何元素的集合叫做空集,記為φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集