在生活和工作中,總結(jié)是我們進步的動力之一,我們是否需要好好總結(jié)一番呢?在現(xiàn)代社會中,如何提升個人素質(zhì)和綜合能力?下面是小編為大家收集整理的一些總結(jié)范文,僅供參考。
抽屜原理篇一
教學(xué)內(nèi)容:
六年級數(shù)學(xué)下冊70頁、71頁例1、例2.
教學(xué)目標(biāo):
2、經(jīng)歷“抽屜原理”的探究過程,體會比較、推理的學(xué)習(xí)方法,會用“抽屜原理”解決簡單的的實際問題。
4、感受數(shù)學(xué)的魅力,提高學(xué)習(xí)興趣,培養(yǎng)學(xué)生的探究精神。
教學(xué)重點:
經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。
教學(xué)難點:
教學(xué)準(zhǔn)備:
相應(yīng)數(shù)量的杯子、鉛筆、課件。
教學(xué)過程:
一、情景引入。
讓五位學(xué)生同時坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學(xué)生。
師:同學(xué)們,你們想知道這是為什么嗎?今天,我們一起研究一個新的有趣的數(shù)學(xué)問題。
二、探究新知。
1、探究3根鉛筆放到2個杯子里的問題。
師:現(xiàn)在用3根鉛筆放在2個杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?
擺完后學(xué)生匯報,教師作相應(yīng)的板書(3,0)(2,1),引導(dǎo)學(xué)生觀察理解說出:不管怎么放總有一個杯子至少有2根鉛筆。
2、教學(xué)例1。
(2)、學(xué)生匯報放結(jié)果,結(jié)合學(xué)具操作解釋。教師作相應(yīng)記錄。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(學(xué)生通過操作觀察、比較不難發(fā)現(xiàn)有與上個問題同樣結(jié)論。)。
(3)學(xué)生回答后讓學(xué)生閱讀例1中對話框:不管怎么放,總有一個杯子里至少放進2根鉛筆。
師:“總有”是什么意思?“至少”呢?讓學(xué)生理解它們的含義。
師:怎樣放才能總有一個杯子里鉛筆數(shù)最少?引導(dǎo)學(xué)生理解需要“平均放”。
教師出示課件演示讓學(xué)生進一步理解“平均放”。
3、探究n+1根鉛筆放進n個杯子問題。
師:那我們再往下想,6根鉛筆放在5個杯子里,你感覺會有什么結(jié)論?
讓學(xué)生思考發(fā)現(xiàn)不管怎么放,總有一個杯子里至少有2根鉛筆。
師:7根鉛筆放進6個杯子,你們又有什么發(fā)現(xiàn)?
……。
學(xué)生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個杯子里至少放進2根鉛筆?讓學(xué)生進行小組合作討論匯報。
學(xué)生匯報后引導(dǎo)學(xué)生用實驗驗證想法。
師:把10根小棒放在9個杯子里呢,總有一個杯子里至少有幾根小棒?(2根)。
師:把100根小棒放在99個杯子里,會有什么結(jié)論呢?(2根)。
4、總結(jié)規(guī)律。
a、先同桌擺一擺,再說一說。
b、你怎么分的?
引導(dǎo)學(xué)生知道再把兩根鉛筆平均分,分別放入兩個杯子里。
(2)探究把15根鉛筆放在4個杯子里的結(jié)論。
(3)、引導(dǎo)學(xué)生總結(jié)得出結(jié)論:商加1是總有一個杯子至少個數(shù)。
(4)教學(xué)例2。
課件出示:
1、把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
2、把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
3、把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
學(xué)生匯報。
小結(jié):不管怎么放,總有一個抽屜里至少有“商加1”本書了。
師:這就是有趣的“抽屜原理”,又稱“鴿籠原理”,最先同19世紀(jì)的德國數(shù)學(xué)家狄里克雷提出來的,所以又稱“狄里克雷原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些今人驚異的結(jié)果。
三、解決問題。
1、7枝筆入進5個筆筒里,不管怎么放,總有一個筆筒中至少有2枝筆。為什么?
2、8只鴿子飛回3鴿籠,不管飛,總有一個鴿籠里至少有3只鴿子。為什么?
四、課時總結(jié)。
抽屜原理篇二
今天聽了唐老師上的《抽屜原理》一課,深有感觸,我一直認(rèn)為抽屜原理是在奧數(shù)書上出現(xiàn)的,因為初中也一直沒把它列入必修項目,沒想到在小學(xué)六年級的數(shù)學(xué)廣角里出現(xiàn)了,而且小學(xué)生也能聽明白,看來我們有時多了解一下小學(xué)課本,也可以為小學(xué)知識再現(xiàn)時多一份準(zhǔn)備。我對唐老師這堂課有下面幾點粗淺的看法:
唐老師整堂課給我的感覺就是內(nèi)容較充實,知識一層層地加深,一環(huán)連一環(huán)。這可見唐老師的教學(xué)功底確實很扎實。他先是出了三顆棋子放兩個杯子,幾種放法?然后再四顆放入三個杯中,再五顆放四個杯子中,都有幾種分法?進一步引入了平均分,得出了“抽屜原理”,并由一個知識鏈接介紹了創(chuàng)始人狄利克雷。緊接著唐老師又把數(shù)字改變,5顆放入2個杯中,7顆放入3個杯子,9顆放入2個杯中,6顆放入4個,讓學(xué)生充分應(yīng)用了平均分的方法計算,總有一個杯子中至少放幾顆?后面又是撲克游戲、請你判斷、實踐應(yīng)用等習(xí)題的運用,讓學(xué)生把做這類題的算法深深印在腦海中,而且在每次的練習(xí)中都能讓學(xué)生用數(shù)學(xué)語言去說,去學(xué)。
唐老師整堂課都貫穿了讓學(xué)生“擺一擺”,兩同桌通力合作,共同探究,找出擺棋子的多種方法,并把方法記下,這樣答案就不言而喻了,一目了然。學(xué)生在“擺一擺”的過程中去慢慢體會平均分所得出的“抽屜原理”。
一點建議:唐老師這堂課肯定也花了不少精力去準(zhǔn)備了這么多道題,但我覺得整堂課學(xué)生似乎真正思考的時間并不多,學(xué)生擺棋子也只是匆匆忙忙的,因為我都有點應(yīng)接不暇了,更何況初學(xué)的學(xué)生。所以我覺得唐老師可以在習(xí)題上、變化不大的題方面減點,讓學(xué)生有更多的時間思考一下為何要這樣分,變老師的為自己的,這樣才會記憶深刻。另一方面我覺得在“擺一擺”方面,可以先出二道有變化的習(xí)題讓學(xué)生同時擺,擺完這題再擺下一題,這樣學(xué)生可能在操作方面不會疲于應(yīng)付,而會去更多一份思考,從而更調(diào)動了學(xué)生的積極性。
抽屜原理篇三
“數(shù)學(xué)廣角”是人教版六年級下冊第五單元的內(nèi)容。在數(shù)學(xué)問題中,有一類與“存在性”有關(guān)的問題,如任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。本節(jié)課借助把4本書放進3個抽屜里的操作情境,介紹了一類較簡單的“抽屜原理”。
本課通過直觀和實際操作,使學(xué)生進一步經(jīng)歷“抽屜原理”的探究過程,并對一些簡單的實際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問題的能力以及探索數(shù)學(xué)問題的興趣,同時也使學(xué)生感受到數(shù)學(xué)思想方法的奇妙與作用,在數(shù)學(xué)思維的訓(xùn)練中,逐步形成有序地、嚴(yán)密地思考思考問題的意識。
本節(jié)課我安排了四個教學(xué)環(huán)節(jié):
第一環(huán):創(chuàng)設(shè)情境,誘發(fā)興趣。
在這個環(huán)節(jié)中,安排了一個小游戲:任意抽取五張撲克牌,不看牌判斷五張牌中同種花色的至少有2張,讓學(xué)生猜猜。為什么老師可以這樣判斷?由此引發(fā)學(xué)生的興趣,營造一個愉快的學(xué)習(xí)氛圍,為學(xué)習(xí)新知創(chuàng)設(shè)良好的情境。
第二環(huán):自主參與,探索新知。
在這個環(huán)節(jié)中,教學(xué)時先放手讓學(xué)生自主思考,采用實踐操作的方法進行“證明”,然后再進行交流,引導(dǎo)他們對“列舉法”、“假設(shè)法”兩種方法進行比較,使學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。
第三層:應(yīng)用新知,解決問題。
讓學(xué)生借助直觀和假設(shè)法最核心的思路“有余數(shù)除法”形式,使學(xué)生更好的理解抽屜原理解決問題的'一般思路。小學(xué)生不要求學(xué)生用反證法進行嚴(yán)格的證明,鼓勵學(xué)生借助學(xué)具、實物操作、或畫圖的方式進行說理。
第四層:引導(dǎo)學(xué)生總結(jié)規(guī)律。
在學(xué)生自主探索的基礎(chǔ)上,教師進一步比較優(yōu)化,讓學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。在有趣的類推活動中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗和理解“抽屜原理”的最基本原理,當(dāng)物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學(xué)過程,從方法層面和知識層面上對學(xué)生進行了提升,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
抽屜原理篇四
xx老師的《抽屜原理》一課結(jié)構(gòu)完整,過程清晰,充分體現(xiàn)了學(xué)生的主體地位,為學(xué)生提供了足夠的自主探索的空間,引導(dǎo)學(xué)生在觀察、猜測、操作、推理和交流等數(shù)學(xué)活動中初步了解“抽屜原理”,并學(xué)會了用“抽屜原理”解決簡單的實際問題。
1、本節(jié)課充分放手,讓學(xué)生自主思考,采用自己的方法“證明”:“把4枝筆放入3個文具盒中,不管怎么放,總有一個杯子里至少放進2枝筷子”,然后交流展示,為后面開展教與學(xué)的活動做了鋪墊。此處設(shè)計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有學(xué)生的積極性。在有趣的類推活動中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗和理解“抽屜原理”的最基本原理:當(dāng)物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學(xué)過程,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評價學(xué)生各種“證明”方法,針對學(xué)生的'不同方法教師給予針對性的鼓勵和指導(dǎo),讓學(xué)生在自主探索中體驗成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進一步比較優(yōu)化,讓學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。
2、在教學(xué)過程中充分發(fā)揮了學(xué)生的主體性,在抽屜原理(2)的推導(dǎo)過程中,至少是“商+余數(shù)”,還是“商+1”個物體放進同一個抽屜。讓學(xué)生互相爭辯,再由學(xué)生自己想辦法來進行驗證,使學(xué)生更好的理解了抽屜原理。另外,本節(jié)課中,學(xué)生爭先恐后的學(xué)習(xí)行為,積極參與自學(xué)、交流、合作、展示、補充、互評、提問、質(zhì)疑、反思等的學(xué)習(xí)過程,“自主、合作、探究”的學(xué)習(xí)方式,給人留下了深刻的印象,學(xué)生主體地位得到了充分的落實。
3、注意滲透數(shù)學(xué)和生活的聯(lián)系。并在游戲中深化知識。
學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題?教學(xué)中教師注重了聯(lián)系學(xué)生的生活實際。課前老師設(shè)計一個游戲:“學(xué)生在一副去掉了大小王的撲克牌中,任意抽取五張,老師猜:總有一種花色的牌至少有兩張。”這是為什么?學(xué)生很驚訝。于是,學(xué)生的積極性被調(diào)動起來了,總想接開其中的奧秘。學(xué)完抽屜原理后,讓學(xué)生用學(xué)過的知識來解釋這些現(xiàn)象,有效的滲透“數(shù)學(xué)來源于生活,又還原于生活”的理念。
商討之處:
學(xué)生對“至少”一詞的理解還顯得有些欠缺,學(xué)生僅僅理解了字面上的意思,對“至少”一詞的指向性還不明確,就我理解,“至少”應(yīng)該是指的在每一種情況中出現(xiàn)的最大數(shù)中的最小數(shù),而有學(xué)生卻理解成是每一種情況中的最小數(shù)。如何讓學(xué)生的理解更準(zhǔn)確,更深刻,還需探究。
抽屜原理篇五
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:
知識與技能:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。
過程與方法:經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
情感與態(tài)度:通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學(xué)難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
1、用具體的操作,將抽象變?yōu)橹庇^。
“總有一個文具盒中至少放進2支鉛筆”這句話對于學(xué)生而言,抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個文具盒中至少放進2支鉛筆”這種現(xiàn)象,讓學(xué)生理解這句話。
2、充分發(fā)揮學(xué)生主動性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。
學(xué)生是學(xué)習(xí)的主動者,特別是這種原理的初步認(rèn)識,不應(yīng)該是教師牽著學(xué)生手去認(rèn)識,而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
3、適當(dāng)把握教學(xué)要求。
我們的教學(xué)不同于社會上的輔導(dǎo)培優(yōu)機構(gòu),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“抽屜”和“物體”。
以學(xué)生為課堂的主體,采用創(chuàng)設(shè)情境,提出問題,讓學(xué)生大膽猜測、動手操作、自主探究、合作交流。
今天在學(xué)習(xí)新課之前,老師和大家玩一個“搶凳子”游戲。(下面有2把椅子。3個同學(xué)玩搶凳子的游戲,要求每個人都要坐到凳子上,結(jié)果會怎樣?)。
1、提出問題:把4支筆放進3個文具盒中,可以怎么放?
2、驗證結(jié)論:不管學(xué)生猜測的結(jié)論是什么,都要求學(xué)生借助實物進行操作,來驗證結(jié)論。學(xué)生以小組為單位進行操作和交流時,教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生。
(1)先請列舉所有情況的學(xué)生進行匯報,一、說明列舉的不同情況,二、結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況)。
學(xué)生匯報完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支筆被放進了同一個文具盒。
(2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結(jié)論嗎?
學(xué)生匯報了自己的方法后,教師圍繞假設(shè)法,組織學(xué)生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。
在討論的基礎(chǔ)上,教師小結(jié):假如每個文具盒放入一支鉛筆,剩下的一支還要放進一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。
(3)初步觀察規(guī)律。
4、發(fā)現(xiàn)規(guī)律,初步建模。
我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可)。
小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理。
5、用有余數(shù)的除法算式表示假設(shè)法的思維過程。
(2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進同一個鴿舍。為什么?
6、再次發(fā)現(xiàn)規(guī)律。
觀察板書,你有什么發(fā)現(xiàn)嗎?讓學(xué)生通過對除法算式的觀察,得出“只要物體個數(shù)比抽屜個數(shù)幾倍還多,總有一個抽屜至少有商+1個這樣的物體?!钡慕Y(jié)論。
7、介紹課外知識。
介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學(xué)家狄里克雷。
【設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情?!?。
《導(dǎo)學(xué)練案》自我測評第一題。
對于本節(jié)課的學(xué)習(xí),你的感受如何?
只要物體數(shù)量比抽屜的數(shù)量多,
總有一個抽屜至少放進2個物體。
只要物體個數(shù)比抽屜個數(shù)幾倍還多,總(至少數(shù)=商+1)。
有一個抽屜至少有商+1個這樣的物體。文章。
抽屜原理篇六
我聽了覃老師的《抽屜原理》一節(jié)課后,受益匪淺,本節(jié)課覃老師著眼于學(xué)生的發(fā)展,凸顯數(shù)學(xué)學(xué)習(xí)的生活化;注重發(fā)揮多媒體教學(xué)的作用,通過課件演示、動手操作、游戲活動等方式組織教學(xué),引導(dǎo)學(xué)生觀察比較。同時,還注意學(xué)生獲取知識的思維過程,體現(xiàn)教師的引導(dǎo)下學(xué)生的主動探究過程。
這一堂課中有以下幾個亮點,是值得我學(xué)習(xí)的地方:
1.在新課的學(xué)習(xí)中,覃老師著力調(diào)動學(xué)生的學(xué)習(xí)積極性,讓全體同學(xué)都主動參與到學(xué)習(xí)中,并給予學(xué)生上臺操作演示的機會。在整個課堂教學(xué)中,覃老師并沒有完整地小結(jié)公式之類的規(guī)律,更多的是引導(dǎo)學(xué)生學(xué)會學(xué)習(xí),懂得思考問題的方式方法,從“無序”走向“有序”,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的參與熱情,真正促進了學(xué)生思維的發(fā)展。
2.努力培養(yǎng)學(xué)生的數(shù)學(xué)情感,讓學(xué)生學(xué)習(xí)生活中的數(shù)學(xué),做到讓數(shù)學(xué)生活化,使學(xué)生從生活開始、在生活中學(xué)、到生活中用。同時又不乏情趣調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,以此培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
根據(jù)學(xué)生生活經(jīng)驗,教學(xué)中選取了學(xué)生熟知的身邊的實例活動,密切了數(shù)學(xué)與學(xué)生現(xiàn)實生活的聯(lián)系,調(diào)動了學(xué)生原有的生活經(jīng)驗,使學(xué)生覺得數(shù)學(xué)就在自己的身邊。這樣就激發(fā)了學(xué)生探究問題的強烈欲望,激活了學(xué)生的思維,發(fā)揮了學(xué)生的主動性。引導(dǎo)學(xué)生把所學(xué)知識運用到日常生活中,并延伸到課堂外,讓學(xué)生繼續(xù)探尋知識,感悟了新知,發(fā)展了數(shù)感,體驗了成功,獲取了數(shù)學(xué)活動經(jīng)驗,真正體現(xiàn)了學(xué)生在課堂教學(xué)中的主體作用。
根據(jù)教學(xué)設(shè)計多媒體課件應(yīng)用恰當(dāng)好處。教學(xué)中,覃老師通過演示形象生動的課件,讓學(xué)生理解6只鴿子飛進5個鴿舍,至少有一個鴿舍里有2只鴿子。既成功地突破了教學(xué)的重點與難點,又激發(fā)學(xué)生學(xué)習(xí)的興趣,并在應(yīng)用規(guī)律解決問題中獲得成功的情感體驗。
不足之處:課堂中對學(xué)生的評價不夠,這樣對學(xué)生的學(xué)習(xí)積極性有所打擊。
抽屜原理篇七
今天上午第三節(jié)課,代老師執(zhí)教的《抽屜原理》一課,給我整體的感覺是教師教得扎實,學(xué)生學(xué)得有效。抽屜原理很抽象,依靠學(xué)生的邏輯思維能力進行教學(xué),對于師生而言,這節(jié)課比較難上。數(shù)學(xué)廣角主要是數(shù)學(xué)思想方法的滲透,提升思維水平。雖然小學(xué)階段的抽屜原理的內(nèi)容比較簡單,但是學(xué)生建立抽屜原理的一般化模型是比較困難的。
本節(jié)課代老師充分放手,讓學(xué)生自主思考,采用自己的方法“證明”。本課最大的亮點是簡化了知識結(jié)構(gòu),梳理了教學(xué)內(nèi)容。教師首先出示:“把3本書放進兩個抽屜里,可以怎樣放?”讓學(xué)生敘述分法,感知:不管怎么放,至少有兩本書在同一個抽屜里。本環(huán)節(jié)的設(shè)計是為了初步感知抽屜原理的特點,至少等關(guān)鍵詞非常重要,同時也滲透了解決抽屜原理的可行性方法——枚舉法。本環(huán)節(jié)初步達到了預(yù)設(shè)的教學(xué)目標(biāo)。
接著出示:“把4枝鉛筆放入3個文具盒中,不管怎么放,總有一個文具盒里至少放進2枝鉛筆”這正是本課的難點內(nèi)容。代老師用導(dǎo)學(xué)提綱,引導(dǎo)學(xué)生學(xué)生動手實驗,讓學(xué)生在動手操作中,體驗和理解“抽屜原理”的最基本原理。然后交流展示,為后面開展教與學(xué)的活動做了鋪墊。此處設(shè)計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有學(xué)生的積極性。在有趣的類推活動中,引導(dǎo)學(xué)生得出一般性的結(jié)論:當(dāng)物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學(xué)過程,從方法層面和知識層面上對學(xué)生進行了提升,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評價學(xué)生各種“證明”方法,針對學(xué)生的不同方法教師給予針對性的鼓勵和指導(dǎo),讓學(xué)生在自主探索中體驗成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進一步比較優(yōu)化,讓學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。
抽屜原理篇八
我聽了覃老師的《抽屜原理》一節(jié)課后,受益匪淺,本節(jié)課覃老師著眼于學(xué)生的發(fā)展,凸顯數(shù)學(xué)學(xué)習(xí)的生活化;注重發(fā)揮多媒體教學(xué)的作用,通過課件演示、動手操作、游戲活動等方式組織教學(xué),引導(dǎo)學(xué)生觀察比較。同時,還注意學(xué)生獲取知識的思維過程,體現(xiàn)教師的引導(dǎo)下學(xué)生的主動探究過程。
這一堂課中有以下幾個亮點,是值得我學(xué)習(xí)的地方:
1.在新課的學(xué)習(xí)中,覃老師著力調(diào)動學(xué)生的學(xué)習(xí)積極性,讓全體同學(xué)都主動參與到學(xué)習(xí)中,并給予學(xué)生上臺操作演示的機會。在整個課堂教學(xué)中,覃老師并沒有完整地小結(jié)公式之類的規(guī)律,更多的是引導(dǎo)學(xué)生學(xué)會學(xué)習(xí),懂得思考問題的方式方法,從“無序”走向“有序”,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的參與熱情,真正促進了學(xué)生思維的發(fā)展。
2.努力培養(yǎng)學(xué)生的數(shù)學(xué)情感,讓學(xué)生學(xué)習(xí)生活中的數(shù)學(xué),做到讓數(shù)學(xué)生活化,使學(xué)生從生活開始、在生活中學(xué)、到生活中用。同時又不乏情趣調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,以此培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
根據(jù)學(xué)生生活經(jīng)驗,教學(xué)中選取了學(xué)生熟知的身邊的實例活動,密切了數(shù)學(xué)與學(xué)生現(xiàn)實生活的聯(lián)系,調(diào)動了學(xué)生原有的生活經(jīng)驗,使學(xué)生覺得數(shù)學(xué)就在自己的'身邊。這樣就激發(fā)了學(xué)生探究問題的強烈欲望,激活了學(xué)生的思維,發(fā)揮了學(xué)生的主動性。引導(dǎo)學(xué)生把所學(xué)知識運用到日常生活中,并延伸到課堂外,讓學(xué)生繼續(xù)探尋知識,感悟了新知,發(fā)展了數(shù)感,體驗了成功,獲取了數(shù)學(xué)活動經(jīng)驗,真正體現(xiàn)了學(xué)生在課堂教學(xué)中的主體作用。
根據(jù)教學(xué)設(shè)計多媒體課件應(yīng)用恰當(dāng)好處。教學(xué)中,覃老師通過演示形象生動的課件,讓學(xué)生理解6只鴿子飛進5個鴿舍,至少有一個鴿舍里有2只鴿子。既成功地突破了教學(xué)的重點與難點,又激發(fā)學(xué)生學(xué)習(xí)的興趣,并在應(yīng)用規(guī)律解決問題中獲得成功的情感體驗。
不足之處:課堂中對學(xué)生的評價不夠,這樣對學(xué)生的學(xué)習(xí)積極性有所打擊。
文檔為doc格式。
抽屜原理篇九
首先,我對本節(jié)教材進行一些分析:
一、教材結(jié)構(gòu)與內(nèi)容簡析。
本節(jié)內(nèi)容在全書及章節(jié)的地位:《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書第十二冊第五單元第一節(jié)。本節(jié)共三個例題,例1、例2的教材通過幾個直觀例子,借助實際操作向?qū)W生介紹抽屜原理,例3則是在學(xué)生理解抽屜原理這一數(shù)學(xué)方法的基礎(chǔ)上,用這一原理解決簡單的實際問題。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生的展示數(shù)學(xué)原理的靈活應(yīng)用,讓學(xué)生感受數(shù)學(xué)的魅力,貫穿初步的數(shù)論及組合知識。
二、教學(xué)目標(biāo)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
1、基礎(chǔ)知識目標(biāo):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
2、能力訓(xùn)練目標(biāo):
1)、會用“抽屜原理”解決簡單的實際問題。
2)、通過操作發(fā)展學(xué)生有根據(jù)、有條理地進行思考和推理的能力,形成比較抽象的數(shù)學(xué)思維。
3、個性品質(zhì)目標(biāo):
通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力,產(chǎn)生主動學(xué)數(shù)學(xué)的興趣。
三、教學(xué)重點、難點、關(guān)鍵。
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點。
重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。通過設(shè)計教學(xué)環(huán)節(jié)讓學(xué)生動手操作,自主探索,小組合作交流的方法找到解決問題的關(guān)鍵,總結(jié)出解決問題的辦法。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。通過不同類型的練習(xí),以及觀看鴿巢原理演示圖,建構(gòu)知識,從本質(zhì)上認(rèn)識抽屜原理,將抽屜原理模型化,從而突破難點。
下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
四、教法。
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程。由于本節(jié)課的教學(xué)內(nèi)容較為抽象,著重采用情境教學(xué)法,直觀演示法與談話法相結(jié)合的方式進行教學(xué)。
五、學(xué)法。
教學(xué)最重要的就是讓學(xué)生學(xué)會學(xué)習(xí)的方法。授之以漁,而非授之以魚!因此在教學(xué)中要特別重視學(xué)法的指導(dǎo)。本節(jié)課學(xué)生主要采用了自主、合作、探究式的學(xué)習(xí)方式。
六、教學(xué)程序及設(shè)想。
1、由魯賓孫航海故事引入:把三枚金幣放進兩個盒子里,至少有一個盒子會放幾枚金幣?把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的讓學(xué)生感興趣的問題,讓學(xué)生產(chǎn)生強烈的求知欲望,使學(xué)生的整個學(xué)習(xí)過程成為“探索”,繼而緊張地沉思,尋找理由,證明過程。
在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
本題從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有的學(xué)生積極參與進來。
抽屜原理篇十
1、理解最簡單的抽屜原理及抽屜原理的一般形式。
2、引導(dǎo)學(xué)生采用操作的方法進行枚舉及假設(shè)法探究。
經(jīng)歷抽屜原理的`探究過程,初步了解抽屜原理。
體會數(shù)學(xué)知識在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識和能力。
經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?
游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。
(一)教學(xué)例1。
師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
(1)“總有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)。
學(xué)生思考并進行組內(nèi)交流,教師選代表進行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)。
抽屜原理篇十一
各為評委、老師,大家好:
我說課題目是《抽屜原理》(板書),這節(jié)課是小學(xué)數(shù)學(xué)第十二冊第五單元數(shù)學(xué)廣角的第一節(jié),下面我從以下四方面來說說這節(jié)課。
本單元共三個例題,例1、例2的內(nèi)容,教材通過幾個直觀的例子,借助實際操作向?qū)W生介紹抽屜原理。例3則是在學(xué)生理解抽屜原理這一數(shù)學(xué)方法的基礎(chǔ)上,會用這一原理解決簡單的實際問題。例1例2的內(nèi)容,主要經(jīng)歷抽屜原理的探究過程,重在引導(dǎo)學(xué)生通過實際操作發(fā)現(xiàn)、總結(jié)規(guī)律,這一內(nèi)容為后面學(xué)習(xí)抽屜原理(二)及利用這一原理解決問題做下了有力的鋪墊。例1和例2既可以用一課時完成,又可以分兩課時完成,而我選擇后者,有如下思考。
數(shù)學(xué)廣角的內(nèi)容蘊含著豐富的數(shù)學(xué)思想方法,廣角的教學(xué)目的主要在于讓學(xué)生受到數(shù)學(xué)思想方法的熏陶,發(fā)展數(shù)學(xué)思維能力,因此對大多數(shù)學(xué)生而言,學(xué)起來是存在一些思維難度的。而抽屜原理是數(shù)學(xué)廣角這個皇冠上的明珠,比十一冊上的《雞兔同籠》的學(xué)習(xí)更具挑戰(zhàn)性。在《抽屜原理》中,“總有一個”、“至少”這兩個關(guān)鍵詞的解讀和為了達到“至少”而進行“平均分”的思路,以及把什么看做物體,把什么看做抽屜,這樣一個數(shù)學(xué)模型的建立,學(xué)生學(xué)起來頗具難度,尤其是對“至少”的理解,它不同于以往數(shù)學(xué)學(xué)習(xí)中所說的含義,這里的“至少”是指在物體個數(shù)最多的抽屜中找到最少的物體個數(shù),這對學(xué)生而言是一種全新的思維方式,他們很可能一時轉(zhuǎn)不過彎。另外,讓學(xué)生用精煉準(zhǔn)確的語言來表述自己的思考也是一個難點。
再看看課本,根據(jù)例1、例2理出了《抽屜原理》的知識序列。例1描述的是物體數(shù)比抽屜數(shù)多1的情況,例1的做一做代表的是物體數(shù)不到抽屜數(shù)的2倍,比抽屜數(shù)多2、多3一類的情形,例2描述的是物體數(shù)比抽屜數(shù)的非1整數(shù)倍多1的情況,例2的做一做代表的是物體數(shù)比抽屜數(shù)的非1整數(shù)倍多,且不止多1的情形??梢?,例1是學(xué)好例2的基礎(chǔ),只有通過例1的教學(xué),讓全體學(xué)生真實地經(jīng)歷“抽屜原理”的探究過程,把他們在學(xué)習(xí)中可能會遇到的幾個困難,弄懂、弄通,建立清晰的基本概念、思路、方法,他們才可能順利地進行例2的學(xué)習(xí),否則,此內(nèi)容的學(xué)習(xí)將只是優(yōu)生炫酷的天地,他們可能一開課就能說出原理,而其他學(xué)生可能一節(jié)課下來還弄不清什么是“總有一個”、什么是“至少”,怎樣才能很快知道“至少”是幾個物體。因此,我選擇將例1、例2分成兩課時完成??赡苡欣蠋熣f,這樣本課的教學(xué)內(nèi)容容量太少了,基于這一點,我在第四個環(huán)節(jié)有說明的。
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
教學(xué)重點是:經(jīng)歷抽屜原理的探究過程,發(fā)現(xiàn)、總結(jié)并理解抽屜原理。
我把:理解抽屜原理中“總有”“至少”的含義作為本課的教學(xué)難點。
我之所以這樣確定教學(xué)目標(biāo)和重難點,是因為《新標(biāo)準(zhǔn)》指出:在本學(xué)段學(xué)生將通過數(shù)學(xué)活動了解數(shù)學(xué)與生活的廣泛聯(lián)系,學(xué)會運用所學(xué)知識和方法解決簡單的實際問題,加深對所學(xué)知識的理解,獲得運用數(shù)學(xué)解決問題的思考方法。
教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實踐操作法。
學(xué)法上學(xué)生主要采用了自主、合作、探究式的學(xué)習(xí)方式。
第四個方面是:以學(xué)定教,與課堂對話。
本節(jié)課共我設(shè)計了四個教學(xué)環(huán)節(jié):游戲?qū)搿骄啃轮此?、呈現(xiàn)——解決問題(游戲)。
下面我分別說說這樣設(shè)計的意圖。
第一環(huán)節(jié)——游戲?qū)搿?/p>
由于只把例1作為本課的教學(xué)內(nèi)容,我在設(shè)計的時候?qū)?的教學(xué)進行了一些鋪墊和補充。在導(dǎo)入部分,設(shè)計了猜至少有幾個學(xué)生是同月生的游戲,拉近數(shù)學(xué)與生活的關(guān)系,激發(fā)學(xué)生的探究欲望。在例1的教學(xué)后加入了5枝鉛筆放入4個盒子的問題,目的在于通過兩個不同的實例讓學(xué)生較充分地感受、體驗、發(fā)現(xiàn)相同的現(xiàn)象,有利于學(xué)生進行抽象、概括,使結(jié)論的得出更有說服力。然后拓展到7枝鉛筆放入5個盒子,8枝鉛筆放入5個盒子,9枝鉛筆放入5個盒子,這一類余數(shù)是2、是3、是4的問題的探究,完成對抽屜原理第一層次的認(rèn)識。
第二環(huán)節(jié),探究新知。
根據(jù)學(xué)生學(xué)習(xí)的困難和認(rèn)知規(guī)律,我在探究部分設(shè)計了三個層次的教學(xué)活動,這三個層次的教學(xué)活動由形象思維逐步過渡到抽象思維,層層遞進,培養(yǎng)學(xué)生的邏輯思維能力。
第一個層出:實物操作,把4枝鉛筆放入3個盒子(板書),解決3個問題:
1、怎樣放。
知道排列組合的方法,明確如果只是放入每個盒中的枝數(shù)的排序不一樣,應(yīng)視為一種分法,并引導(dǎo)學(xué)生有序思考,為后面的列舉掃清障礙。
2、共有幾種放法孕伏對“不管怎樣放”的理解。
3、認(rèn)識“總有一個”的意義。
通過觀察盒中鉛筆枝數(shù),找出4種放法中鉛筆枝數(shù)最多的盒中枝數(shù)分別有哪幾種情況,理解“總有一個”的含義,得到一個初步的印象:不管怎么放,總有一個鉛筆盒放的枝數(shù)是最多的,分別是2枝,3枝和4枝。
第二個層次:脫離具體操作,由抽象到數(shù),進行數(shù)的分解——思考把5枝鉛筆放入4個盒子(板書包括6支5盒),又會出現(xiàn)怎樣的情況,學(xué)生直接完成表格。這一層次達成三個目的:
1、理解“至少”的含義,準(zhǔn)確表述現(xiàn)象。
通過觀察表格中枝數(shù)最多的盒子里的數(shù)據(jù),讓學(xué)生在“最多”中找“最少”,學(xué)會用“至少”來表達,概括出“5枝放4盒”、“4枝放3盒”時,總有一個文具盒里至少放入2枝鉛筆的結(jié)論。
2、理解“平均分”(板書)的思路,知道為什么要“平均分”。
抓住最能體現(xiàn)結(jié)論的一種情況,引導(dǎo)學(xué)生理解怎樣很快知道總有一個文具盒里至少是幾枝的方法——就是按照盒數(shù)平均分,只有這樣才能讓最多的盒子里枝數(shù)盡可能少。
3、抽象概括小結(jié)現(xiàn)象。
通過“4枝放入3個盒子”、”5枝放入4個盒子”和練習(xí)題“6枝放入5個盒子”,讓學(xué)生抽象概括出“當(dāng)物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體”(板書),初步認(rèn)識抽屜原理。
(三)學(xué)生自選問題,探究“如果物體數(shù)不止比抽屜數(shù)多1,不管怎樣放,總有一個鉛筆盒中至少要放入幾枝鉛筆?”(板書789物體5抽屜)。
這一層次請學(xué)生理解當(dāng)余數(shù)不是1時,要經(jīng)歷兩次平均分,第一次是按抽屜的平均分,第二次是按余下的枝數(shù)平均分,只有這樣才能達到讓“最多的盒子里枝數(shù)盡可能少”的目的。
教學(xué)流程的第三個環(huán)節(jié),將本節(jié)課研究過的所有實例進行總體呈現(xiàn),讓學(xué)生通過比較,總結(jié)出抽屜原理中最簡單的情況:物體數(shù)不到抽屜數(shù)的2倍時,不管怎樣放,總有一個抽屜中至少要放入2個物體(板書)。
在最后的練習(xí)環(huán)節(jié)以游戲的形式出現(xiàn),我設(shè)計了幾個需要應(yīng)用“抽屜原理”解決的簡單的實際問題,進一步培養(yǎng)學(xué)生的“模型”思想,讓學(xué)生能正確地找出問題中什么是“待分的東西”,什么是“抽屜”,同時也讓學(xué)生感受到數(shù)學(xué)知識在生活中的應(yīng)用,感受到數(shù)學(xué)的魅力。
平均分。
4支鉛筆放進3個文具盒。
5支4個。
6支5個。
當(dāng)物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體。
7個物體5抽屜。
8個物體5抽屜。
9個物體5抽屜。
﹕﹕。
﹕﹕。
“……,不管怎樣放,總有一個抽屜,至少放進2個物體?!?/p>
這是這節(jié)課的板書設(shè)計。
謝謝大家!我的說課完畢。
抽屜原理篇十二
××老師的《抽屜原理》一課結(jié)構(gòu)完整,過程清晰,充分體現(xiàn)了學(xué)生的主體地位,為學(xué)生提供了足夠的自主探索的空間,引導(dǎo)學(xué)生在觀察、猜測、操作、推理和交流等數(shù)學(xué)活動中初步了解“抽屜原理”,并學(xué)會了用“抽屜原理”解決簡單的實際問題。
1、本節(jié)課充分放手,讓學(xué)生自主思考,采用自己的方法“證明”:“把4枝筆放入3個文具盒中,不管怎么放,總有一個杯子里至少放進2枝筷子”,然后交流展示,為后面開展教與學(xué)的活動做了鋪墊。此處設(shè)計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有學(xué)生的積極性。在有趣的類推活動中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗和理解“抽屜原理”的最基本原理:當(dāng)物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學(xué)過程,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評價學(xué)生各種“證明”方法,針對學(xué)生的不同方法教師給予針對性的鼓勵和指導(dǎo),讓學(xué)生在自主探索中體驗成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進一步比較優(yōu)化,讓學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。
2、在教學(xué)過程中充分發(fā)揮了學(xué)生的主體性,在抽屜原理(2)的推導(dǎo)過程中,至少是“商+余數(shù)”,還是“商+1”個物體放進同一個抽屜。讓學(xué)生互相爭辯,再由學(xué)生自己想辦法來進行驗證,使學(xué)生更好的理解了抽屜原理。另外,本節(jié)課中,學(xué)生爭先恐后的學(xué)習(xí)行為,積極參與自學(xué)、交流、合作、展示、補充、互評、提問、質(zhì)疑、反思等的學(xué)習(xí)過程,“自主、合作、探究”的學(xué)習(xí)方式,給人留下了深刻的印象,學(xué)生主體地位得到了充分的落實。
3、注意滲透數(shù)學(xué)和生活的聯(lián)系。并在游戲中深化知識。
學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題?教學(xué)中教師注重了聯(lián)系學(xué)生的生活實際。課前老師設(shè)計一個游戲:“學(xué)生在一副去掉了大小王的撲克牌中,任意抽取五張,老師猜:總有一種花色的牌至少有兩張?!边@是為什么?學(xué)生很驚訝。于是,學(xué)生的積極性被調(diào)動起來了,總想接開其中的奧秘。學(xué)完抽屜原理后,讓學(xué)生用學(xué)過的知識來解釋這些現(xiàn)象,有效的滲透“數(shù)學(xué)來源于生活,又還原于生活”的理念。
商討之處:
學(xué)生對“至少”一詞的理解還顯得有些欠缺,學(xué)生僅僅理解了字面上的意思,對“至少”一詞的指向性還不明確,就我理解,“至少”應(yīng)該是指的在每一種情況中出現(xiàn)的最大數(shù)中的最小數(shù),而有學(xué)生卻理解成是每一種情況中的最小數(shù)。如何讓學(xué)生的理解更準(zhǔn)確,更深刻,還需探究。