體會是指將學(xué)習(xí)的東西運(yùn)用到實(shí)踐中去,通過實(shí)踐反思學(xué)習(xí)內(nèi)容并記錄下來的文字,近似于經(jīng)驗(yàn)總結(jié)。大家想知道怎么樣才能寫得一篇好的心得體會嗎?以下我給大家整理了一些優(yōu)質(zhì)的心得體會范文,希望對大家能夠有所幫助。
人工智能心得體會人工智能心得體會字篇一
學(xué)生們都對刮獎(jiǎng)非常感興趣,通過刮獎(jiǎng)環(huán)節(jié)的設(shè)計(jì),學(xué)生很快的融入課堂環(huán)境中,學(xué)生們積極參入,踴躍發(fā)言,學(xué)習(xí)興趣盎然,在寓教于樂額學(xué)習(xí)氛圍中學(xué)習(xí)新知識,掌握新技能。
學(xué)生們利用之前所學(xué)程序可以計(jì)算出簡單的價(jià)格,但是當(dāng)問題逐漸增多,利用之前的方法就非常麻煩了,這時(shí)候引導(dǎo)學(xué)生提出問題,教給學(xué)生新的知識點(diǎn)-變量。
本節(jié)課學(xué)生參入度高,動(dòng)手實(shí)踐能力強(qiáng),設(shè)計(jì)的問題層層遞進(jìn),環(huán)環(huán)相扣,過渡環(huán)節(jié)都處理的非常到位,更多的是讓學(xué)生自己去探索,把課堂交給學(xué)生,不斷創(chuàng)新,發(fā)揮了學(xué)生的主體學(xué)習(xí)地位,讓其自主探索,合作學(xué)習(xí),做到真正的掌握一門技能。這也是培養(yǎng)學(xué)生不斷創(chuàng)新的手段之一。
希望以后能有更多這樣的學(xué)習(xí)機(jī)會,以便于在信息技術(shù)的教學(xué)上有更大的進(jìn)步和提高。
人工智能心得體會人工智能心得體會字篇二
一、激趣導(dǎo)入,引入新知
學(xué)生們都對刮獎(jiǎng)非常感興趣,通過刮獎(jiǎng)環(huán)節(jié)的設(shè)計(jì),學(xué)生很快的融入課堂環(huán)境中,學(xué)生們積極參入,踴躍發(fā)言,學(xué)習(xí)興趣盎然,在寓教于樂額學(xué)習(xí)氛圍中學(xué)習(xí)新知識,掌握新技能。
二、積極探索,形象直觀
學(xué)生們利用之前所學(xué)程序可以計(jì)算出簡單的價(jià)格,但是當(dāng)問題逐漸增多,利用之前的`方法就非常麻煩了,這時(shí)候引導(dǎo)學(xué)生提出問題,教給學(xué)生新的知識點(diǎn)-變量。
三、小組合作,積極探究
本節(jié)課學(xué)生參入度高,動(dòng)手實(shí)踐能力強(qiáng),設(shè)計(jì)的問題層層遞進(jìn),環(huán)環(huán)相扣,過渡環(huán)節(jié)都處理的非常到位,更多的是讓學(xué)生自己去探索,把課堂交給學(xué)生,不斷創(chuàng)新,發(fā)揮了學(xué)生的主體學(xué)習(xí)地位,讓其自主探索,合作學(xué)習(xí),做到真正的掌握一門技能。這也是培養(yǎng)學(xué)生不斷創(chuàng)新的手段之一。
希望以后能有更多這樣的學(xué)習(xí)機(jī)會,以便于在信息技術(shù)的教學(xué)上有更大的進(jìn)步和提高。
人工智能心得體會人工智能心得體會字篇三
通過這學(xué)期的學(xué)習(xí),我對人工智能有了一定的感性認(rèn)識,個(gè)人覺得人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項(xiàng)工作的人必須懂得計(jì)算機(jī)知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計(jì)算機(jī)視覺等等,總的說來,人工智能研究的一個(gè)主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。人工智能的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時(shí)我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識、自我、思維等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點(diǎn)。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。關(guān)于人工智能一個(gè)大家比較容易接受的定義是這樣的:人工智能是人造的智能,是計(jì)算機(jī)科學(xué)、邏輯學(xué)、認(rèn)知科學(xué)交叉形成的一門科學(xué),簡稱ai。
人工智能的發(fā)展歷史大致可以分為這幾個(gè)階段:
第一階段:50年代人工智能的興起和冷落
人工智能概念首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問題s求解程序、lisp表處理語言等。但由于消解法推理能力的有限,以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。
第三階段:80年代,隨著第五代計(jì)算機(jī)的研制,人工智能得到了很大發(fā)展。日本1982年開始了”第五代計(jì)算機(jī)研制計(jì)劃”,即”知識信息處理計(jì)算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運(yùn)算那么快。雖然此計(jì)劃最終失敗,但它的開展形成了一股研究人工智能的熱潮。
第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展。
1987年,美國召開第一次神經(jīng)網(wǎng)絡(luò)國際會議,宣告了這一新學(xué)科的誕生。此后,各國在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來。
第五階段:90年代,人工智能出現(xiàn)新的研究高潮
由于網(wǎng)絡(luò)技術(shù)特別是國際互連網(wǎng)的技術(shù)發(fā)展,人工智能開始由單個(gè)智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問題求解,而且研究多個(gè)智能主體的多目標(biāo)問題求解,將人工智能更面向?qū)嵱?。另外,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。人工智能已深入到社會生活的各個(gè)領(lǐng)域。
對人工智能對世界的影響的感受及未來暢想
在當(dāng)前社會中的呢?
人類正向信息化的時(shí)代邁進(jìn),信息化是當(dāng)前時(shí)代的主旋律。信息抽象結(jié)晶為知識,知識構(gòu)成智能的基礎(chǔ)。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經(jīng)并且廣泛而有深入的結(jié)合到科學(xué)技術(shù)的各門學(xué)科和社會的各個(gè)領(lǐng)域中,她的概念,方法和技術(shù)正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學(xué)等領(lǐng)域中人工智能的應(yīng)用已經(jīng)顯示出了它具有明顯的經(jīng)濟(jì)效益潛力,和提升人們生活水平的最大便利性和先進(jìn)性。
智能是一個(gè)寬泛的概念。智能是人類具有的特征之一。然而,對于什么是人類智能(或者說智力),科學(xué)界至今還沒有給出令人滿意的定義。有人從生物學(xué)角度定義為“中樞神經(jīng)系統(tǒng)的功能”,有人從心理學(xué)角度定義為“進(jìn)行抽象思維的能力”,甚至有人同義反復(fù)地把它定義為“獲得能力的能力”,或者不求甚解地說它“就是智力測驗(yàn)所測量的那種東西”。這些都不能準(zhǔn)確的說明人工智能的確切內(nèi)涵。
雖然難于下定義,但人工智能的發(fā)展已經(jīng)是當(dāng)前信息化社會的迫切要求,同時(shí)研究人工智能也對探索人類自身智能的奧秘提供有益的幫助。所以每一次人工智能技術(shù)的進(jìn)步都將帶動(dòng)計(jì)算機(jī)科學(xué)的大跨步前進(jìn)。如果將現(xiàn)有的計(jì)算機(jī)技術(shù)、人工智能技術(shù)及自然科學(xué)的某些相關(guān)領(lǐng)域結(jié)合,并有一定的理論實(shí)踐依據(jù),計(jì)算機(jī)將擁有一個(gè)新的發(fā)展方向。
個(gè)人覺得研究人工智能的目的,一方面是要?jiǎng)?chuàng)造出具有智能的機(jī)器,另一方面是要弄清人類智能的本質(zhì),因此,人工智能既屬于工程的范疇,又屬于科學(xué)的范疇。通過研究和開發(fā)人工智能,可以輔助,部分替代甚至拓寬人類的智能,使計(jì)算機(jī)更好的造福人類。
人工智能心得體會人工智能心得體會字篇四
在大多數(shù)數(shù)學(xué)科中存在著幾個(gè)不同的研究領(lǐng)域,每個(gè)領(lǐng)域都有著特有的感興趣的研究課題、研究技術(shù)和術(shù)語。在人工智能中,這樣的領(lǐng)域包括自然語言處理、自動(dòng)定理證明、自動(dòng)程序設(shè)計(jì)、智能檢索、智能調(diào)度、機(jī)器學(xué)習(xí)、專家系統(tǒng)、機(jī)器人學(xué)、智能控制、模式識別、視覺系統(tǒng)、神經(jīng)網(wǎng)絡(luò)、agent、計(jì)算智能、問題求解、人工生命、人工智能方法、程序設(shè)計(jì)語言等。
在過去50多年里,已經(jīng)建立了一些具有人工智能的計(jì)算機(jī)系統(tǒng);例如,能夠求解微分方程的,下棋的,設(shè)計(jì)分析集成電路的,合成人類自然語言的,檢索情報(bào)的,診斷疾病以及控制控制太空飛行器、地面移動(dòng)機(jī)器人和水下機(jī)器人的具有不同程度人工智能的計(jì)算機(jī)系統(tǒng)。人工智能是一種外向型的學(xué)科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實(shí)的數(shù)學(xué)基礎(chǔ),哲學(xué)和生物學(xué)基礎(chǔ),只有這樣才可能讓一臺什么也不知道的機(jī)器模擬人的思維。因?yàn)槿斯ぶ悄艿难芯款I(lǐng)域十分廣闊,它總的來說是面向應(yīng)用的,也就說什么地方有人在工作,它就可以用在什么地方,因?yàn)槿斯ぶ悄艿淖罡灸康倪€是要模擬人類的思維。參照人在各種活動(dòng)中的功能,我們可以得到人工智能的領(lǐng)域也不過就是代替人的活動(dòng)而已。哪個(gè)領(lǐng)域有人進(jìn)行的智力活動(dòng),哪個(gè)領(lǐng)域就是人工智能研究的領(lǐng)域。人工智能就是為了應(yīng)用機(jī)器的長處來幫助人類進(jìn)行智力活動(dòng)。人工智能研究的目的就是要模擬人類神經(jīng)系統(tǒng)的功能。
近年來,人工智能的研究和應(yīng)用出現(xiàn)了許多新的領(lǐng)域,它們是傳統(tǒng)人工智能的延伸和擴(kuò)展。在新世紀(jì)開始的時(shí)候,這些新研究已引起人們的更密切關(guān)注。這些新領(lǐng)域有分布式人工智能與艾真體(agent)、計(jì)算智能與進(jìn)化計(jì)算、數(shù)據(jù)挖掘與知識發(fā)現(xiàn),以及人工生命等。下面逐一加以概略介紹。
分布式人工智能(distributedai,dai)是分布式計(jì)算與人工智能結(jié)合的結(jié)果。dai系統(tǒng)以魯棒性作為控制系統(tǒng)質(zhì)量的標(biāo)準(zhǔn),并具有互操作性,即不同的異構(gòu)系統(tǒng)在快速變化的環(huán)境中具有交換信息和協(xié)同工作的能力。
分布式人工智能的研究目標(biāo)是要?jiǎng)?chuàng)建一種能夠描述自然系統(tǒng)和社會系統(tǒng)的精確概念模型。dai中的智能并非獨(dú)立存在的概念,只能在團(tuán)體協(xié)作中實(shí)現(xiàn),因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(tǒng)(multiagentsystem,mas)兩領(lǐng)域。其中,分布式問題求解把一個(gè)具體的求解問題劃分為多個(gè)相互合作和知識共享的模塊或結(jié)點(diǎn)。多艾真體系統(tǒng)則研究各艾真體間智能行為的協(xié)調(diào),包括規(guī)劃、知識、技術(shù)和動(dòng)作的協(xié)調(diào)。這兩個(gè)研究領(lǐng)域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個(gè)全局的概念模型、問題和成功標(biāo)準(zhǔn),而mas則含有多個(gè)局部的概念模型、問題和成功標(biāo)準(zhǔn)。
態(tài)的世界環(huán)境,因而倍受重視,已成為人工智能以至計(jì)算機(jī)科學(xué)和控制科學(xué)與工程的研究熱點(diǎn)。當(dāng)前,艾真體和mas的研究包括理論、體系結(jié)構(gòu)、語言、合作與協(xié)調(diào)、通訊和交互技術(shù)、mas學(xué)習(xí)和應(yīng)用等。mas已在自動(dòng)駕駛、機(jī)器人導(dǎo)航、機(jī)場管理、電力管理和信息檢索等方面獲得應(yīng)用。
2、計(jì)算智能與進(jìn)化計(jì)算
計(jì)算智能(computing intelligence)涉及神經(jīng)計(jì)算、模糊計(jì)算、進(jìn)化計(jì)算等研究領(lǐng)域。其中,神經(jīng)計(jì)算和模糊計(jì)算已有較長的研究歷史,而進(jìn)化計(jì)算則是較新的研究領(lǐng)域。在此僅對進(jìn)化計(jì)算加以說明。
進(jìn)化計(jì)算(evolutionary computation)是指一類以達(dá)爾文進(jìn)化論為依據(jù)來設(shè)計(jì)、控制和優(yōu)化人工系統(tǒng)的技術(shù)和方法的總稱,它包括遺傳算法(genetical gorithms)、進(jìn)化策略(evolutionary strategies)和進(jìn)化規(guī)劃(evolutionary programming)。它們遵循相同的指導(dǎo)思想,但彼此存在一定差別。同時(shí),進(jìn)化計(jì)算的研究關(guān)注學(xué)科的交叉和廣泛的應(yīng)用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統(tǒng)稱為進(jìn)化計(jì)算方法。目前,進(jìn)化計(jì)算被廣泛運(yùn)用于許多復(fù)雜系統(tǒng)的自適應(yīng)控制和復(fù)雜優(yōu)化問題等研究領(lǐng)域,如并行計(jì)算、機(jī)器學(xué)習(xí)、電路設(shè)計(jì)、神經(jīng)網(wǎng)絡(luò)、基于艾真體的仿真、元胞自動(dòng)機(jī)等。
達(dá)爾文進(jìn)化論是一種魯棒的搜索和優(yōu)化機(jī)制,對計(jì)算機(jī)科學(xué),特別是對人工智能的發(fā)展產(chǎn)生了很大的影響。大多數(shù)生物體通過自然選擇和有性生殖進(jìn)行進(jìn)化。自然選擇決定了群體中哪些個(gè)體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優(yōu)勝劣汰。
直到幾年前,遺傳算法、進(jìn)化規(guī)劃、進(jìn)化策略三個(gè)領(lǐng)域的研究才開始交流,并發(fā)現(xiàn)它們的共同理論基礎(chǔ)是生物進(jìn)化論。因此,把這三種方法統(tǒng)稱為進(jìn)化計(jì)算,而把相應(yīng)的算法稱為進(jìn)化算法。
3、數(shù)據(jù)挖掘與知識發(fā)現(xiàn)
知識獲取是知識信息處理的關(guān)鍵問題之一。20世紀(jì)80年代人們在知識發(fā)現(xiàn)方面取得了一定的進(jìn)展。利用樣本,通過歸納學(xué)習(xí),或者與神經(jīng)計(jì)算結(jié)合起來進(jìn)行知識獲取已有一些試驗(yàn)系統(tǒng)。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)是90年代初期新崛起的一個(gè)活躍的研究領(lǐng)域。在數(shù)據(jù)庫基礎(chǔ)上實(shí)現(xiàn)的知識發(fā)現(xiàn)系統(tǒng),通過綜合運(yùn)用統(tǒng)計(jì)學(xué)、粗糙集、模糊數(shù)學(xué)、機(jī)器學(xué)習(xí)和專家系統(tǒng)等多種學(xué)習(xí)手段和方法,從大量的數(shù)據(jù)中提煉出抽象的知識,從而揭示出蘊(yùn)涵在這些數(shù)據(jù)背后的客觀世界的內(nèi)在聯(lián)系和本質(zhì)規(guī)律,實(shí)現(xiàn)知識的自動(dòng)獲取。這是一個(gè)富有挑戰(zhàn)性、并具有廣闊應(yīng)用前景的研究課題。
從數(shù)據(jù)庫獲取知識,即從數(shù)據(jù)中挖掘并發(fā)現(xiàn)知識,首先要解決被發(fā)現(xiàn)知識的表達(dá)問題。最好的表達(dá)方式是自然語言,因?yàn)樗侨祟惖乃季S和交流語言。知識表示的最根本問題就是如何形成用自然語言表達(dá)的概念。
機(jī)器知識發(fā)現(xiàn)始于1974年,并在此后十年中獲得一些進(jìn)展。這些進(jìn)展往往與專家系統(tǒng)的知識獲取研究有關(guān)。到20世紀(jì)80年代末,數(shù)據(jù)挖掘取得突破。越來越多的研究者加入到知識發(fā)現(xiàn)和數(shù)據(jù)挖掘的研究行列?,F(xiàn)在,知識發(fā)現(xiàn)和數(shù)據(jù)挖掘已成為人工智能研究的又一熱點(diǎn)。
比較成功的知識發(fā)現(xiàn)系統(tǒng)有用于超級市場商品數(shù)據(jù)分析、解釋和報(bào)告的
coverstory系統(tǒng),用于概念性數(shù)據(jù)分析和查尋感興趣關(guān)系的集成化系統(tǒng)explora,交互式大型數(shù)據(jù)庫分析工具kdw,用于自動(dòng)分析大規(guī)模天空觀測數(shù)據(jù)的skicat系統(tǒng),以及通用的數(shù)據(jù)庫知識發(fā)現(xiàn)系統(tǒng)kdd等。
4、人工生命
人工生命(artificiallife,alife)的概念是由美國圣菲研究所非線性研究組的蘭頓(langton)于1987年提出的,旨在用計(jì)算機(jī)和精密機(jī)械等人工媒介生成或構(gòu)造出能夠表現(xiàn)自然生命系統(tǒng)行為特征的仿真系統(tǒng)或模型系統(tǒng)。自然生命系統(tǒng)行為具有自組織、自復(fù)制、自修復(fù)等特征以及形成這些特征的混沌動(dòng)力學(xué)、進(jìn)化和環(huán)境適應(yīng)。
人工生命所研究的人造系統(tǒng)能夠演示具有自然生命系統(tǒng)特征的行為,在“生命之所能”(lifeasitcouldbe)的廣闊范圍內(nèi)深入研究“生命之所知”(lifeasweknowit)的實(shí)質(zhì)。只有從“生命之所能”的廣泛內(nèi)容來考察生命,才能真正理解生物的本質(zhì)。人工生命與生命的形式化基礎(chǔ)有關(guān)。生物學(xué)從問題的頂層開始,把器官、組織、細(xì)胞、細(xì)胞膜,直到分子,以探索生命的奧秘和機(jī)理。人工生命則從問題的底層開始,把器官作為簡單機(jī)構(gòu)的宏觀群體來考察,自底向上進(jìn)行綜合,把簡單的由規(guī)則支配的對象構(gòu)成更大的集合,并在交互作用中研究非線性系統(tǒng)的類似生命的全局動(dòng)力學(xué)特性。
人工生命的理論和方法有別于傳統(tǒng)人工智能和神經(jīng)網(wǎng)絡(luò)的理論和方法。人工生命把生命現(xiàn)象所體現(xiàn)的自適應(yīng)機(jī)理通過計(jì)算機(jī)進(jìn)行仿真,對相關(guān)非線性對象進(jìn)行更真實(shí)的動(dòng)態(tài)描述和動(dòng)態(tài)特征研究。
人工生命學(xué)科的研究內(nèi)容包括生命現(xiàn)象的仿生系統(tǒng)、人工建模與仿真、進(jìn)化動(dòng)力學(xué)、人工生命的計(jì)算理論、進(jìn)化與學(xué)習(xí)綜合系統(tǒng)以及人工生命的應(yīng)用等。比較典型的人工生命研究有計(jì)算機(jī)病毒、計(jì)算機(jī)進(jìn)程、進(jìn)化機(jī)器人、自催化網(wǎng)絡(luò)、細(xì)胞自動(dòng)機(jī)、人工核苷酸和人工腦等。
(1)了解人工智能的概念和人工智能的發(fā)展,了解國際人工智能的主要流派和路線,了解國內(nèi)人工智能研究的基本情況,熟悉人工智能的研究領(lǐng)域。
(2)較詳細(xì)地論述知識表示的各種主要方法。重點(diǎn)掌握了狀態(tài)空間法、問題歸約法和謂詞邏輯法,熟悉語義網(wǎng)絡(luò)法,了解知識表示的其他方法,如框架法、劇本法、過程法等。
(3)掌握了盲目搜索和啟發(fā)式搜索的基本原理和算法,特別是寬度優(yōu)先搜索、深度優(yōu)先搜索、等代價(jià)搜索、啟發(fā)式搜索、有序搜索、a*算法等。了解博弈樹搜索、遺傳算法和模擬退火算法的基本方法。
(4)掌握了消解原理、規(guī)則演繹系統(tǒng)和產(chǎn)生式系統(tǒng)的技術(shù)、了解不確定性推理、非單調(diào)推理的概念。
(5)概括性地了解了人工智能的主要應(yīng)用領(lǐng)域,如專家系統(tǒng)、機(jī)器學(xué)習(xí)、規(guī)劃系統(tǒng)、自然語言理解和智能控制等。
(6)基本了解人工智能程序設(shè)計(jì)的語言和工具。
對現(xiàn)代社會的影響有多大?工業(yè)領(lǐng)域,尤其是制造業(yè),已成功地使用了人工智能技術(shù),包括智能設(shè)計(jì)、虛擬制造、在線分析、智能調(diào)度、仿真和規(guī)劃等。金融業(yè),股票商利用智能系統(tǒng)輔助其分析,判斷和決策;應(yīng)用卡欺詐檢測系統(tǒng)業(yè)已得到普遍應(yīng)用。人工智能還滲透到人們的日常生活,cad,cam,cai,cap,cims等一系列智能產(chǎn)品給大家?guī)砹藰O大的方便,它還改變了傳統(tǒng)的通信方式,語音撥號,手寫短信的智能手機(jī)越來越人性化。
人工智能還影響了你們的文化和娛樂生活,引發(fā)人們更深層次的精神和哲學(xué)層面的思考,從施瓦辛格主演的《終結(jié)者》系列,到基努.里維斯主演的《黑客帝國》系列以及斯皮爾伯格導(dǎo)演的《人工智能》,都有意無意的提出了同樣的問題:我們應(yīng)該如何看待人工智能?如何看待具有智能的機(jī)器?會不會有一天機(jī)器的智能將超過人的智能?問題的答案也許千差萬別,我個(gè)人認(rèn)為上述擔(dān)心不太可能成為現(xiàn)實(shí),因?yàn)槲覀兝斫馊斯ぶ悄懿⒉皇亲屗〈祟愔悄?,而是讓它模擬人類智能,從而更好地為人類服務(wù)。
當(dāng)前人工智能技術(shù)發(fā)展迅速,新思想,新理論,新技術(shù)不斷涌現(xiàn),如模糊技術(shù),模糊--神經(jīng)網(wǎng)絡(luò),遺傳算法,進(jìn)化程序設(shè)計(jì),混沌理論,人工生命,計(jì)算智能等。以agent概念為基礎(chǔ)的分布式人工智能正在異軍突起,特別是對于軟件的開發(fā),“面向agent技術(shù)”將是繼“面向?qū)ο蠹夹g(shù)”后的又一突破。從萬維網(wǎng)到人工智能的研究正在如火如荼的開展。
(1)能夠結(jié)合現(xiàn)在最新研究成果著重講解重點(diǎn)知識,以及講述在一些研究成果中人工智能那些知識被應(yīng)用。
(2)多推薦一些過于人工智能方面的電影,如:《終結(jié)者》系列、《黑客帝國》系列、《人工智能》等,從而增加同學(xué)對這門課程學(xué)習(xí)的興趣。
(3)條件允許的話,可以安排一些實(shí)驗(yàn)課程,讓同學(xué)們自己制作一些簡單的作品,增強(qiáng)同學(xué)對人工智能的興趣,加強(qiáng)同學(xué)之間的學(xué)習(xí)。
(4)課堂上多講解一些人工智能在各個(gè)領(lǐng)域方面的應(yīng)用,以及著重闡述一些新的和正在研究的人工智能方法與技術(shù),讓同學(xué)們可以了解近期發(fā)展起來的方法和技術(shù),在講解時(shí)最好多舉例,再結(jié)合原理進(jìn)行講解,更助于同學(xué)們對人工智能的理解。